Skip to main content

Advertisement

Log in

Energy-spectral efficient resource allocation and power control in heterogeneous networks with D2D communication

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Heterogeneous networks (HetNets) provide the demand for high data rates. In this study, we analyze the coexistence of femtocells and device-to-device (D2D) communication with macrocells. Interference management and decreasing energy consumption are two important issues in HetNets. To this end, we propose an efficient fractional frequency reuse (FFR)-based spectrum partitioning scheme to reduce the cross-tier interference. We also propose to use different optimization problems for resource allocation in different tiers. For this purpose, an energy efficient optimization problem is applied to D2D user equipment. Further, an optimization problem based on the spectral efficiency, i.e., throughput, is considered for macrocell and femtocell tiers. These problems are modeled as a non-cooperative game that results in low computational complexity. Iterative algorithms with fast convergence are used to solve the optimization problems. It is shown that applying different optimizations on different tiers leads to better performance than considering the same optimization for all tiers. The results indicate that the proposed FFR structure and optimization problems improve system performance. We also analyze the tradeoff between energy efficiency and spectral efficiency of the introduced structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BS:

Base station

CDF:

Cumulative distribution function

D2D:

Device-to-device

D2D Rx:

D2D receiver

D2D Tx:

D2D transmitter

DUE:

D2D user equipment

EE:

Energy efficiency

FBS:

Femtocell base station

FUE:

Femtocell user equipment

FFR:

Fractional frequency reuse

HetNet:

Heterogeneous network

LSN:

Log skew normal

MBS:

Macro base station

MUE:

Macrocell user equipment

PDF:

Probability distribution function

QoS:

Quality of service

RB:

Resource block

RSS:

Received signal strength

SN:

Skew normal

SPPP:

Spatial poisson point process

SE:

Spectral efficiency

UE:

User equipment

References

  1. Zahir, T., et al. (2013). Interference management in femtocells. IEEE Communications Surveys & Tutorials,15(1), 293–311.

    Article  Google Scholar 

  2. Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine,46(9), 59–67.

    Article  Google Scholar 

  3. Li, Y., et al. (2013). Energy-efficient femtocell networks: Challenges and opportunities. IEEE Wireless Communications,20(6), 99–105.

    Article  Google Scholar 

  4. Asadi, A., Wang, Q., & Mancuso, V. (2014). A survey on device-to-device communication in cellular networks. IEEE Communications Surveys & Tutorials,16, 1801–1819.

    Article  Google Scholar 

  5. Shahid, A., Kim, K. S., De Poorter, E., & Moerman, I. (2017). Self-organized energy-efficient cross-layer optimization for device to device communication in heterogeneous cellular networks. IEEE Access,5, 1117–1128.

    Article  Google Scholar 

  6. Sobhi-Givi, S., Khazali, A., Kalbkhani, H., Shayesteh, M. G., & Solouk, V. (2017). Resource allocation and power control for underlay device-to-device communication in fractional frequency reuse cellular networks. Telecommunication Systems,65, 677–697.

    Article  Google Scholar 

  7. Davaslioglu, K., & Ayanoglu, E. (2014). Quantifying potential energy efficiency gain in green cellular wireless networks. IEEE Communications Surveys & Tutorials,16(4), 2065–2091.

    Article  Google Scholar 

  8. Afroz, F., Sandrasegaran, K., & Al Kim, H. (2015). Interference management in LTE downlink networks. International Journal of Wireless & Mobile, Networks,7(1), 91.

    Article  Google Scholar 

  9. Hsu, C.-C., & Chang, J. M. (2017). Spectrum-energy efficiency optimization for downlink LTE-A for heterogeneous networks. IEEE Transactions on Mobile Computing,16(5), 1449–1461.

    Article  Google Scholar 

  10. Kim, T.-S., Lee, K.-H., Ryu, S., & Cho, C.-H. (2013). Resource allocation and power control scheme for interference avoidance in an LTE-Advanced cellular networks with device-to-device communication. International Journal of Control and Automation,6, 181–190.

    Article  Google Scholar 

  11. Jeon, W. S., Kim, J., & Jeong, D. G. (2014). Downlink radio resource partitioning with fractional frequency reuse in femtocell networks. IEEE Transactions on Vehicular Technology,63, 308–321.

    Article  Google Scholar 

  12. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications,32, 1065–1082.

    Article  Google Scholar 

  13. Wang, J., Zhu, D., Zhang, H., Zhao, C., Li, J. C., & Lei, M. (2014). Resource optimization for cellular network assisted multichannel D2D communication. Signal Processing,100, 23–31.

    Article  Google Scholar 

  14. Li, Y., Zhang, L., Tan, X., & Cao, B. (2016). An advanced spectrum allocation algorithm for the across-cell D2D communication in LTE network with higher throughput. China Communications,13(4), 30–37.

    Article  Google Scholar 

  15. Huang, Y., Nasir, A., Durrani, S., & Zhou, X. (2016). Mode selection, resource allocation, and power control for D2D-enabled two-tier cellular network. IEEE Transactions on Communications,64, 3534–3547.

    Article  Google Scholar 

  16. Huo, Liuwei, Jiang, Dingde, & Lv, Zhihan. (2018). Soft frequency reuse-based optimization algorithm for energy efficiency of multi-cell networks. Computers & Electrical Engineering,66, 316–331.

    Article  Google Scholar 

  17. Jiang, D., et al. (2016). An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks. Journal of communications and networks,18(5), 713–724.

    Article  Google Scholar 

  18. Jiang, D., et al. (2015). Network coding-based energy-efficient multicast routing algorithm for multi-hop wireless networks.”. Journal of Systems and Software,104, 152–165.

    Article  Google Scholar 

  19. Jiang, D., et al. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal,3(6), 1437–1447.

    Article  Google Scholar 

  20. Jiang, D., Li, W., & Lv, H. (2017). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing,220, 160–169.

    Article  Google Scholar 

  21. Li, Y., et al. (2015). Energy efficiency maximization by jointly optimizing the positions and serving range of relay stations in cellular networks. IEEE Transactions on Vehicular Technology,64(6), 2551–2560.

    Article  Google Scholar 

  22. Li, Y., et al. (2015). Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Transactions on Wireless Communications,14(8), 4093–4104.

    Article  Google Scholar 

  23. Hoang, T. D., Le, L. B., & Le-Ngoc, T. (2015). Dual decomposition method for energy-efficient resource allocation in D2D communications underlying cellular networks. In 2015 IEEE global communications conference (GLOBECOM), 2015 (pp. 1–6).

  24. Jiang, D., et al. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2017.2778939.

    Article  Google Scholar 

  25. Zhou, Z., Dong, M., Ota, K., Wu, J., & Sato, T. (2014). Energy efficiency and spectral efficiency tradeoff in device-to-device (D2D) communications. IEEE Wireless Communications Letters,3, 485–488.

    Article  Google Scholar 

  26. Davaslioglu, K., Coskun, C. C., & Ayanoglu, E. (2015). Energy-efficient resource allocation for fractional frequency reuse in heterogeneous networks. IEEE Transactions on Wireless Communications,14, 5484–5497.

    Article  Google Scholar 

  27. Kalbkhani, H., Solouk, V., & Shayesteh, M. G. (2015). Resource allocation in integrated femto-macrocell networks based on location awareness. Communications, IET,9, 917–932.

    Article  Google Scholar 

  28. Alouini, M.-S., & Goldsmith, A. J. (1999). Area spectral efficiency of cellular mobile radio systems. Vehicular Technology, IEEE Transactions on,48, 1047–1066.

    Article  Google Scholar 

  29. Chandrasekhar, V., & Andrews, J. G. (2009). Uplink capacity and interference avoidance for two-tier femtocell networks. Wireless Communications, IEEE Transactions on,8, 3498–3509.

    Article  Google Scholar 

  30. Ben Hcine, M., & Bouallegue, R. (2015). Fitting the Log Skew normal to the sum of independent lognormals distribution. arXiv preprint arXiv:1501.02344.

  31. Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science,13, 492–498.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, Z., Dong, M., Ota, K., Wu J., & Sato T. (2014). Distributed interference-aware energy-efficient resource allocation for device-to-device communications underlaying cellular networks. In Global communications conference (GLOBECOM), 2014 IEEE (pp. 4454–4459).

  33. Tsiaflakis, P., Necoara, I., Suykens, J. A., & Moonen, M. (2010). Improved dual decomposition based optimization for DSL dynamic spectrum management. IEEE Transactions on Signal Processing,58, 2230–2245.

    Article  MathSciNet  MATH  Google Scholar 

  34. Boyd, S., Xiao, L., & Mutapcic, A. (2003). Subgradient methods. Lecture notes of EE392o, Stanford University, autumn quarter (Vol. 2004, pp. 2004–2005).

  35. Siswanto,D., Zhang, L., Navaie, K., & Deepak, G. (2016). Weighted sum throughput maximization in heterogeneous OFDMA networks. In 2016 IEEE 83rd vehicular technology conference (VTC Spring) (pp. 1–5).

  36. Yongsheng, C., Yuantao, G., & Xiaokang, L. (2014). Power and channel allocation for device-to-device enabled cellular networks. Computational Information Systems,10, 463–472.

    Google Scholar 

  37. Fodor, G., Della Penda, D., Belleschi, M., Johansson, M., & Abrardo, A. (2013). A comparative study of power control approaches for device-to-device communications. In IEEE international conference on communications (ICC), 2013 (pp. 6008–6013).

  38. Lopez-Perez, D., Guvenc, I., De la Roche, G., Kountouris, M., Quek, T. Q., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications,18(3), 22–30.

    Article  Google Scholar 

  39. Lotfollahzadeh, T., Kabiri, S., Kalbkhani, H., & Shayesteh, M. G. (2016). Femtocell base station clustering and logistic smooth transition autoregressive-based predicted signal-to-interference-plus-noise ratio for performance improvement of two-tier macro/femtocell networks. IET Signal Processing,10(1), 1–11.

    Article  Google Scholar 

  40. Chen, D., Jiang, T., & Zhang, Z. (2015). Frequency partitioning methods to mitigate cross-tier interference in two-tier femtocell networks. IEEE Transactions on Vehicular Technology,64(5), 1793–1805.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashem Kalbkhani.

Appendix

Appendix

Lemma

\(U_{EE,o}^{c}\)is quasi-concave, that is, by increasing the value of\(P_{TD}^{n,c}\), \(U_{EE,o}^{c}\)first increases and then decreases [25].

Proof

We obtain the derivation of \(R_{do}^{n,c} \left( {P_{TD}^{n,c} } \right) = \log_{2} \left( {1 + \gamma_{do}^{n,c} } \right)\) (\(\gamma_{do}^{n,c}\) is given in (12)) with respect to \(P_{TD}^{n,c}\) as follows

$$\frac{{\partial R_{do}^{n,c} \left( {P_{TD}^{n,c} } \right)}}{{\partial P_{TD}^{n,c} }} = \frac{{K_{d}^{n,c} }}{a\ln \left( 2 \right)}$$
(41)

where

$$a = P_{TD}^{n,c} \, K_{d}^{n,c} + \sigma_{N}^{2} + P_{TM}^{c} \,K_{md}^{n,c} + \sum\limits_{j = 1}^{{N_{F} }} {P_{TF}^{j,c} \,K_{fd}^{j,n,c} } + \sum\limits_{\begin{subarray}{l} l = 1 \\ l \ne n \end{subarray} }^{{N_{D} }} {P_{TD}^{l,c} \,K_{dd}^{l,n,c} } + I_{do} .$$

It is apparent that \(\frac{{\partial R_{do}^{n,c} \left( {P_{TD}^{n,c} } \right)}}{{\partial P_{TD}^{n,c} }} > 0\). Thus \(R_{do}^{n,c} \left( {P_{TD}^{n,c} } \right)\) increases by increment of \(P_{TD}^{n,c}\).

Also taking the derivation of \(U_{EE,o}^{c} = \frac{{\sum\nolimits_{l = 1}^{{N_{D} }} {R_{do}^{l,c} \left( {P_{TD}^{l,c} } \right)} }}{{\sum\nolimits_{l = 1}^{{N_{D} }} {P_{T,do}^{l,c} } + 2P_{cir} }}\) (eq. (22)) with respect to \(P_{TD}^{\,n,c}\) yields

$$\frac{{\partial U_{EE,o}^{c} }}{{\partial P_{TD}^{\,n,c} }} = {{\left( {\frac{{bK_{d}^{n,c} }}{a\ln \left( 2 \right)} - \sum\limits_{l = 1}^{{N_{D} }} {R_{do}^{l,c} \left( {P_{TD}^{\,l,c} } \right)} } \right)} \mathord{\left/ {\vphantom {{\left( {\frac{{bK_{d}^{n,c} }}{a\ln \left( 2 \right)} - \sum\limits_{l = 1}^{{N_{D} }} {R_{do}^{l,c} \left( {P_{TD}^{\,l,c} } \right)} } \right)} {b^{2} }}} \right. \kern-0pt} {b^{2} }}$$
(42)

where \(b = \sum\nolimits_{l = 1}^{{N_{D} }} {P_{\,T,do}^{\,l,c} } + 2P_{cir}\). The positive value of denominator can be ignored so the shortened equation is defined as:

$$N(P_{TD}^{\,n,c} ) = \frac{{bK_{d}^{n,c} }}{a\ln \left( 2 \right)} - \sum\limits_{l = 1}^{{N_{D} }} {R_{do}^{l,c} \left( {P_{TD}^{\,l,c} } \right)}$$
(43)

In this way, \(N(\infty ) = \mathop {\lim }\limits_{{P_{TD}^{n,c} \to \infty }} \,N(P_{TD}^{n,c} ) = \frac{1}{\ln \left( 2 \right)} - \infty < 0\) and \(N(0) = \mathop {\lim }\limits_{{P_{TD}^{n,c} \to 0}} \, N(P_{TD}^{\,n,c} ) = \frac{{2K_{d}^{\,n,c} P_{cir} }}{\ln \left( 2 \right)a} > 0\)

Taking the first-order derivation of \(N(P_{TD}^{n,c} )\) results in

$$\frac{{\partial N(P_{TD}^{n,c} )}}{{\partial P_{TD}^{n,c} }} = \left[ {\frac{{a - b\left( {K_{d}^{n,c} } \right)^{2} }}{{a^{2} \ln \left( 2 \right)}}} \right. - \left. {\frac{{K_{d}^{n,c} }}{a\ln \left( 2 \right)}} \right]\,\,\, < 0$$
(44)

Therefore, it is concluded that \(N\left( \infty \right) < N(P_{TD}^{n,c} ) < N\left( 0 \right).\) Consequently, when \(P_{\,TD}^{\,n,c} < P_{\,TD,o}^{\, * ,c}\), we have \(\frac{{\partial U_{EE,o}^{\,c} }}{{\partial P_{\,TD}^{\,n,c} }} > 0\) and \(\frac{{\partial U_{EE,o}^{\,c} }}{{\partial P_{\,TD}^{\,n,c} }} < 0\) when \(P_{\,TD}^{\,n,c} > P_{\,TD,o}^{\, * ,c}\). Hence, the increment and then decrement of \(U_{EE,o}^{\,c}\) by increasing the value of \(P_{\,TD}^{\,n,c}\) is proved. As a result, the concaveness of numerator and denominator of \(U_{EE,o}^{\,c}\) results in the quasi concaveness of \(U_{EE,o}^{\,c}\). Similar results hold for \(U_{EE,\,i}^{\,k} .\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazali, A., Sobhi-Givi, S., Kalbkhani, H. et al. Energy-spectral efficient resource allocation and power control in heterogeneous networks with D2D communication. Wireless Netw 26, 253–267 (2020). https://doi.org/10.1007/s11276-018-1811-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1811-3

Keywords

Navigation