Skip to main content

Advertisement

Log in

Energy efficient resource matching algorithm for multi-homing services in dynamic wireless environment

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper investigates the matching problem between radio resources and multi-homing services in a dynamic heterogeneous wireless environment. A mobile terminal with a multi-homing service simultaneously transmits data to multiple radio access networks using multiple air interfaces. This paper proposes an energy-efficient resource matching algorithm to statistically guarantee the service rate requirements of each user with the lowest power consumption. First, according to the concept of resource matching and the dynamic characteristics of wireless channels, this paper defines two matching probability metrics and subsequently selects the most appropriate metric to build a resource matching model to realize the maximum energy efficiency of each user while meeting the statistical guarantee constraints. In particular, the Rayleigh fading channel model is introduced in this paper to accurately reflect the dynamics of the wireless channel, and a complete expression of the matching probability metric is deduced. Second, according to the optimal solution characteristics of the optimization model, the original problem is decomposed into the inner power minimization problem and the outer matching probability maximization problem, and the convex optimization and the equality constrained optimization are separately used to solve the problem. Hence, the two-layer distributed solution algorithm is proposed. In particular, this paper conducts rigorous mathematical analyses on the convergence, optimality and complexity of the algorithm and constructs an improved resource matching model by relaxing the statistical guarantee parameters in the case of no solution to the model. Finally, the simulation results show that this algorithm has better performance than the three existing resource matching algorithms, can achieve lower user power consumption, and can realize the goal of the best match between the network resources and service requirements in a dynamic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andrews, J. G., Buzzi, S., & Wan, C. (2014). What will 5G be. IEEE Journal on Selected Areas in Communications,32(6), 1065–1082.

    Article  Google Scholar 

  2. Yuan, Y. F., & Zhao, X. W. (2015). 5G: Vision, scenarios and enabling technologies. ZTE Communications,1, 3–10.

    Google Scholar 

  3. Wu, W., Yang, Q., & Li, B. (2016). Adaptive cross-layer resource optimization in heterogeneous wireless networks with multi-homing user equipments. Journal of Communications and Networks,18(5), 784–795.

    Article  Google Scholar 

  4. Vahid, H., & Siavash, K. (2017). Mechanism design for pricing and bandwidth allocation in heterogeneous wireless networks to maximize the social welfare. In 9th International conference on information and knowledge technology (pp. 129–140).

  5. Qiu, J., Ding, G., & Wu, Q. (2017). Hierarchical resource allocation framework for hyper-dense small cell networks. IEEE Access,4(99), 8657–8669.

    Google Scholar 

  6. Ahmad, I., Feng, Z., & Hameed, A. (2014). Spectrum sharing and energy-efficient power optimization for two-tier femtocell networks. In IEEE international conference on cognitive radio oriented wireless networks and communications (pp. 156–161).

  7. Walid, A., Sabir, E., & Kobbane, A. (2016). Exploiting multi-homing in hyper dense LTE small-cells deployments. In IEEE wireless communications and networking conference (pp. 1–6).

  8. Wu, W., Yang, Q., & Gong, P. (2016). Energy-efficient resource optimization for OFDMA-based multi-homing heterogenous wireless networks. IEEE Transactions on Signal Processing,64(22), 5901–5913.

    Article  MathSciNet  Google Scholar 

  9. Shuminoski, T., & Janevski, T. (2016). Lyapunov optimization framework for 5G mobile nodes with multi-homing. IEEE Communications Letters,20(5), 1026–1029.

    Article  Google Scholar 

  10. Dey, I., & Chang, R. Y. (2016). Adaptive coded modulation for mobility constrained indoor wireless environments. In IEEE international symposium on personal, indoor, and mobile radio communications (pp. 1–6).

  11. Wang, Y., Miao, G., & Wang, X. (2014). Joint interference mitigation and power allocation for multi-cell LTE networks: A non-cooperative game approach. In IEEE vehicular technology conference (pp. 1–6).

  12. Shahid, A., Aslam, S., & Kim, H. S. (2014). An energy-efficient game theoretic approach towards resource block and power allocation in femtocell networks. In International conference on computer, communications, and control technology (pp. 135–139).

  13. Han, Q., Yang, B., & Chen, C. L. (2016). Matching-based joint uplink and downlink user association for energy-efficient hetnets. In IEEE international conference on wireless communications and signal processing (pp. 1–6).

  14. Chien, S. C., Fujiyama, M., & Ishida, T. (2016). User interface model for microgrid systems monitoring: From user needs to design requirements. In 5th IET international conference on renewable power generation (pp. 1–6).

  15. Amyot, D., Anda, A. A. & Baslyman, M. (2016). Towards improved requirements engineering with SysML and the user requirements notation. In IEEE requirements engineering conference (pp. 329–334).

  16. Xu, C., Li, Z., & Li, J. (2015). Cross-layer fairness-driven concurrent multipath video delivery over heterogeneous wireless networks. IEEE Transactions on Circuits and Systems for Video Technology,25(7), 1175–1189.

    Article  Google Scholar 

  17. Ismail, M., & Zhuang, W. H. (2012). Decentralized radio resource allocation for single-network and multi-homing services in cooperative heterogeneous wireless access medium. IEEE Transactions on Wireless Communications,11(11), 4085–4095.

    Article  Google Scholar 

  18. Braun, W., & Dersch, U. (1991). A physical mobile radio channel model. IEEE Transactions on Vehicular Technology,40(2), 472–482.

    Article  Google Scholar 

  19. Palomar, D. P., & Chiang, M. (2006). A tutorial on decomposition methods for network utility maximization. IEEE Journal on Selected Areas in Communications,24(8), 1439–1451.

    Article  Google Scholar 

  20. Meng, X., Xie, L., & Soh, Y. C. (2016). Distributed event driven optimization for network utility maximization. In IEEE 55th conference on decision and control (pp. 2221–2226).

  21. Barbarossa, S., Sardellitti, S., & Carfagna, A. (2011) Pricing mechanisms for interference management games in femtocell networks based on Markov modeling. In Future network and mobile summit (pp. 1–8).

  22. Belanovi, P., & Zazo, S. (2010). Cooperative localisation in wireless sensor networks using coalitional game theory. In 18th European signal processing conference (pp. 1459–1463).

  23. Yan, D. M., Wang, J. K., & Liu, L. (2008). Target tracking based on cluster and game theory in wireless sensor network. In IET 2nd international conference on wireless, mobile and multimedia networks (pp. 45–48).

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61471203); Six Talent Peaks Project of Jiangsu Province (RJFW-024); “Qing Lan Project” of Jiangsu Province (2016); “1311 Talent Program” of NJUPT (2015); Open Project of National Engineering Research Center of Communications and Networking (TXKY17002); Open Project of Jiangsu Provincial Key Laboratory for Computer Information Processing Technology (KJS1518); National Science and Technology Major Projects (2012ZX03001008-003); Priority Academic Program Development of Jiangsu Higher Education Institutions—Information and Communication Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Appendices

Appendix 1: The concavity or convexity of \(f\left( {p_{nms} ,b_{nms} ,r_{nms} } \right) = - \frac{{b_{nms} \sigma_{noise}^{2} }}{{p_{nms}^{{}} \left( {\frac{\theta }{4\pi d}} \right)^{\vartheta } \cdot g_{s} g_{r} }}\left( {2^{{\frac{{r_{nms} }}{{b_{nms} }}}} - 1} \right)\)

Proof

For f(pnmsbnmsrnms), take the second order partial derivatives and second order mixed partial derivatives of bnms, pnms, and rnms:

$$\frac{{\partial {}^{2}f}}{{\partial p_{nms}^{2} }} = - \frac{{2b_{nms} \sigma_{noise}^{2} }}{{p_{nms}^{3} \left( {\frac{\theta }{4\pi d}} \right)^{\vartheta } \cdot g_{s} g_{r} }}\left( {2^{{\frac{{r_{nms} }}{{b_{nms} }}}} - 1} \right) \le 0$$
(21)
$$\frac{{\partial {}^{2}f}}{{\partial b_{nms}^{2} }} = - \frac{{r_{nms}^{2} \sigma_{noise}^{2} }}{{p_{nms}^{{}} b_{nms}^{3} \left( {\frac{\theta }{4\pi d}} \right)^{\vartheta } \cdot g_{s} g_{r} }}2^{{\frac{{r_{nms} }}{{b_{nms} }}}} \left( {In 2} \right)^{ 2} \le 0$$
(22)
$$\frac{{\partial {}^{2}f}}{{\partial r_{nms}^{2} }} = - \frac{{\sigma_{noise}^{2} }}{{p_{nms}^{{}} b_{nms} \left( {\frac{\theta }{4\pi d}} \right)^{\vartheta } \cdot g_{s} g_{r} }}2^{{\frac{{r_{nms} }}{{b_{nms} }}}} \left( {In 2} \right)^{ 2} \le 0$$
(23)
$$\frac{{\partial {}^{2}f}}{{\partial p_{nms} \partial r_{nms} }} = \frac{{\sigma_{noise}^{2} In2}}{{p_{nms}^{2} \left( {\frac{\theta }{4\pi d}} \right)^{\vartheta } \cdot g_{s} g_{r} }}2^{{\frac{{r_{nms} }}{{b_{nms} }}}} \ge 0$$
(24)
$$\frac{{\partial {}^{2}f}}{{\partial p_{nms} \partial b_{nms} }} = \frac{{\sigma_{noise}^{2} }}{{p_{nms}^{2} \left( {\frac{\theta }{4\pi d}} \right)^{\vartheta } \cdot g_{s} g_{r} }}\left[ {2^{{\frac{{r_{nms} }}{{b_{nms} }}}} \left( {1 - \frac{{r_{nms} }}{{b_{nms} }}In2} \right) - 1} \right]$$
(25)

Because bnms ≥ 0, rnms ≥ 0, and rnms → 0 will cause bnms → 0, then \(\frac{{r_{nms} }}{{b_{nms} }} \ge 0\). \(2^{{\frac{{r_{nms} }}{{b_{nms} }}}} \left( {1 - \frac{{r_{nms} }}{{b_{nms} }}In2} \right) - 1\) is the decreasing function of \(\frac{{r_{nms} }}{{b_{nms} }}\). Therefore, we have:

$$\begin{aligned} \frac{{\partial {}^{2}f}}{{\partial p_{nms} \partial b_{nms} }} & = \frac{{\sigma_{noise}^{2} }}{{p_{nms}^{2} \left( {\frac{\theta }{4\pi d}} \right)^{\vartheta } \cdot g_{s} g_{r} }}\left[ {2^{{\frac{{r_{nms} }}{{b_{nms} }}}} \left( {1 - \frac{{r_{nms} }}{{b_{nms} }}In2} \right) - 1} \right] \\ & \le \frac{{\sigma_{noise}^{2} }}{{p_{nms}^{2} \left( {\frac{\theta }{4\pi d}} \right)^{\vartheta } \cdot g_{s} g_{r} }}\left[ {2^{0} \left( {1 - 0 \cdot In2} \right) - 1} \right] = 0 \\ \end{aligned}$$
(26)

Hence, given rnms, f(pnmsbnmsrnms) is the joint concave function of pnmsand bnms; given bnms, f(pnmsbnmsrnms) is the concave function of pnms and rnms, respectively.

Appendix 2: Optimality theorem and its proof

(I) Optimality theorem: Suppose \((\forall r_{nms}^{*} , \forall p_{nms}^{*} , \forall b_{nms}^{*} )\) is the global optimal solution of resource matching model based on formula (4), for any solution (∀rnms, ∀pnms, ∀bnms) in feasible region, if for any user ∀m there has \(\sum\nolimits_{n = 1}^{{NS_{m} }} {\sum\nolimits_{s = 1}^{{SS_{nm} }} {p_{nms} } } \le \sum\nolimits_{n = 1}^{{NS_{m} }} {\sum\nolimits_{s = 1}^{{SS_{nm} }} {p_{nms}^{*} } }\), then the matching probability of user ∀m with the allocations \(\left( {r_{nms}^{*} , p_{nms}^{*} , b_{nms}^{*} } \right), \forall n, s\) is the largest.

(II) Proof: The logarithm function of matching probability of any user ∀m can be expressed as

$${\rm H} (r_{nms} ,p_{nms} ,b_{nms} ,\forall n,s ) { = }\sum\limits_{n = 1}^{{NS_{m} }} {\sum\limits_{s = 1}^{{SS_{mn} }} {\left( { - \frac{{b_{nms} \sigma_{noise}^{2} }}{{p_{nms}^{{}} \left( {\frac{\theta }{4\pi d}} \right)^{\vartheta } \cdot g_{s} g_{r} }}\left( {2^{{\frac{{r_{nms} }}{{b_{nms} }}}} - 1} \right)} \right)} } .$$

As can be seen, \({\rm H} (r_{nms} ,p_{nms} ,b_{nms} ,\forall n,s )\) is the increasing function of (pnmsbnms), ∀ns and is the decreasing function of rnms, ∀ns. Then, reduction to absurdity is used to prove the Optimality Theorem.

Suppose there is a feasible solution (∀rnms, ∀pnms, ∀bnms) that satisfies \(\sum\nolimits_{n = 1}^{{NS_{m} }} {\sum\nolimits_{s = 1}^{{SS_{nm} }} {p_{nms} } } \le \sum\nolimits_{n = 1}^{{NS_{m} }} {\sum\nolimits_{s = 1}^{{SS_{nm} }} {p_{nms}^{*} } } ,\forall m\) and there is a certain user \(m_{ 1}\) whose matching probability with the feasible solution \(\left( {r_{{nm_{ 1} s}} ,p_{{nm_{ 1} s}} ,b_{{nm_{ 1} s}} } \right),\forall n,s\) is the largest. That is, \({\rm H}(r_{{nm_{1} s}} ,p_{{nm_{1} s}} ,b_{{nm_{1} s}} ,\forall n,s) > {\rm H}(r_{{nm_{1} s}}^{ * } ,p_{{nm_{1} s}}^{ * } ,b_{{nm_{1} s}}^{ * } ,\forall n,s)\). Because \(\left( {r_{{nm_{ 1} s}}^{ * } ,p_{{nm_{ 1} s}}^{ * } ,b_{{nm_{ 1} s}}^{ * } } \right),\forall n,s\) is the global optimal solution for user \(m_{ 1}\), \({\rm H}(r_{{nm_{1} s}}^{ * } ,p_{{nm_{1} s}}^{ * } ,b_{{nm_{1} s}}^{ * } ,\forall n,s) \ge In\left( {1 - \varepsilon } \right)\). Thus, let \({\rm H} (r_{{nm_{ 1} s}} ,p_{{nm_{ 1} s}} ,b_{{nm_{ 1} s}} ,\forall n,s ) { = }{\rm H} (r_{{nm_{ 1} s}}^{ * } ,p_{{nm_{ 1} s}}^{ * } ,b_{{nm_{ 1} s}}^{ * } ,\forall n,s ) { + }\Delta > In\left( {1 - \varepsilon } \right)\), where Δ > 0. Keeping the other quantities unchanged, ∀pnms is replaced with \(\forall p_{nms}^{{\prime }}\). Only when m = m1, n = n1 and s = s1, let \(p_{{n_{ 1} m_{ 1} s_{ 1} }}^{\prime } < p_{{n_{ 1} m_{ 1} s_{ 1} }}\); in other cases, let \(p_{nms}^{{\prime }} { = }p_{nms}\). By reasonably selecting user \(m_{ 1}\)‘s sub-channel \(n_{ 1} m_{ 1} s_{ 1}\) and carefully setting \(p_{{n_{ 1} m_{ 1} s_{ 1} }}^{{\prime }}\), we can get: \({\rm H} (r_{{nm_{ 1} s}} ,p_{{nm_{ 1} s}}^{\prime } ,b_{{nm_{ 1} s}} ,\forall n,s )= {\rm H} (r_{{nm_{ 1} s}}^{ * } ,p_{{nm_{ 1} s}}^{ * } ,b_{{nm_{ 1} s}}^{ * } ,\forall n,s )\ge In\left( {1 - \varepsilon } \right)\). Hence \((\forall r_{nms} , \forall p_{nms}^{\prime } , \forall b_{nms} )\) is a feasible solution. Moreover, when ∀m ≠ m1, there has \(\mathop \sum \nolimits_{n = 1}^{{NS_{m} }} \sum\nolimits_{s = 1}^{{SS_{nm} }} {p_{nms}^{\prime } } = \sum\nolimits_{n = 1}^{{NS_{m} }} {\sum\nolimits_{s = 1}^{{SS_{nm} }} {p_{nms} } } \le \sum\nolimits_{n = 1}^{{NS_{m} }} {\sum\nolimits_{s = 1}^{{SS_{nm} }} {p_{nms}^{*} } }\); when \(m{ = }m_{1}\), there has \(\sum\nolimits_{n = 1}^{{NS_{{m_{ 1} }} }} {\sum\nolimits_{s = 1}^{{SS_{{nm_{ 1} }} }} {p_{{nm_{ 1} s}}^{\prime } } } < \sum\nolimits_{n = 1}^{{NS_{{m_{ 1} }} }} {\sum\nolimits_{s = 1}^{{SS_{{nm_{ 1} }} }} {p_{{nm_{ 1} s}} } } \le \sum\nolimits_{n = 1}^{{NS_{{m_{ 1} }} }} {\sum\nolimits_{s = 1}^{{SS_{{nm_{ 1} }} }} {p_{{nm_{ 1} s}}^{*} } }\). Therefore, \(\sum\nolimits_{m = 1}^{MS} {\sum\nolimits_{n = 1}^{{NS_{m} }} {\sum\nolimits_{s = 1}^{{SS_{nm} }} {\frac{{p_{nms}^{\prime } }}{{P_{m} }}} } } < \sum\nolimits_{m = 1}^{MS} {\sum\nolimits_{n = 1}^{{NS_{m} }} {\sum\nolimits_{s = 1}^{{SS_{nm} }} {\frac{{p_{nms}^{ *} }}{{P_{m} }}} } }\). From this, it can be concluded that the feasible solution \((\forall r_{nms} , \forall p_{nms}^{{\prime }} , \forall b_{nms} )\) is better than the optimal solution \((\forall r_{nms}^{*} , \forall p_{nms}^{*} , \forall b_{nms}^{*} )\), which contradicts the assumption that \((\forall r_{nms}^{*} , \forall p_{nms}^{*} , \forall b_{nms}^{*} )\) is the global optimal solution. Hence, the theorem is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, S., Yang, L. et al. Energy efficient resource matching algorithm for multi-homing services in dynamic wireless environment. Wireless Netw 26, 1177–1192 (2020). https://doi.org/10.1007/s11276-018-1855-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1855-4

Keywords

Navigation