Skip to main content
Log in

A survey of mmWave user association mechanisms and spectrum sharing approaches: an overview, open issues and challenges, future research trends

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Fifth generation (5G) cellular networks promise to support multi-radio access technologies (multi-RATs) with low and high frequencies aiming at delivering good coverage, several gigabits data rate, and ultra-reliable services. In this context, user-association and resource allocation appear to be a huge challenge due to the variety of specifications and varied propagation environments. In this treatise, the focus is on the technical and administrative difficulties of the adoption of user association (UA) mechanism and spectrum sharing approach (SSA) in millimeter wave (mmWave) systems, for example, the technical design considerations and their underlying options, as well as their impact on users and network performance. In addition, details on the importance of the rules and regulations of SSA are presented. This study also identified a few possible design solutions and potential promising technologies in both UA and SSA. In the context of UA, several mechanisms are identified, such as backhaul-, caching-, and hybrid multi-criteria-aware UA to achieve seamless connectivity and to enhance the network utility. In the context of SSA, this study pinpoints varied subjects that need to be explored, such as joint efficient rules and regulations enactment, assessment of fairness and independence in multi-independent mobile network operators (multi-IMNOs) that support SSA, as well as the implementation of hybrid-SSA via Virtualized Cloud Radio Access Network. Finally, attention is drawn to several key conclusions to enable readers and interested researchers to learn about the most controversial points of mmWave 5G cellular networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Majed, M. B., Rahman, T. A., & Aziz, O. A. (2018). Propagation path loss modeling and outdoor coverage measurements review in millimeter wave bands for 5G cellular communications. International Journal of Electrical and Computer Engineering (IJECE),8(4), 2254–2260.

    Article  Google Scholar 

  2. Demestichas, P., Georgakopoulos, A., Tsagkaris, K., & Kotrotsos, S. (2015). Intelligent 5G networks: Managing 5G wireless/mobile broadband. IEEE Vehicular Technology Magazine,10(3), 41–50.

    Article  Google Scholar 

  3. Chedia, J., & Belgacem, C. (2018). Performance of caching in wireless small cell networks. Journal of Telecommunication, Electronic and Computer Engineering,10(1), 35–43.

    Google Scholar 

  4. Emmanuel, A. B., Tekanyi, A., Yahaya, M., & Gadam, M. A. (2017). Improving load balancing in various user distribution LTE advanced HetNets through a hybrid channel-gain access-aware cell selection scheme. Journal of Telecommunication, Electronic and Computer Engineering,10(1), 17–23.

    Google Scholar 

  5. Sakaguchi, K., Haustein, T., Barbarossa, S., Strinati, E. C., Clemente, A., Destino, G., et al. (2017). Where, when, and how mmWave is used in 5G and beyond. IEICE Transactions on Electronics,100(10), 790–808.

    Article  Google Scholar 

  6. Alsharif, M. H., & Nordin, R. (2017). Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommunication Systems,64(4), 617–637.

    Article  Google Scholar 

  7. Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine,51(3), 136–144.

    Article  Google Scholar 

  8. Andrews, J. G., Bai, T., Kulkarni, M., Alkhateeb, A., Gupta, A., & Heath, R. W. (2017). Modeling and analyzing millimeter wave cellular systems. IEEE Transactions on Communications,65(1), 403–430.

    Google Scholar 

  9. Rappaport, T. S., Heath, R. W., Daniels, R. C., & Murdock, J. N. (2014). Millimeter wave wireless communications. New York: Pearson Education.

    Google Scholar 

  10. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access,1, 335–349.

    Article  Google Scholar 

  11. Rangan, S., Rappaport, T. S., Erkip, E., Gomez-Cuba, F., Rappaport, T. S., & Erkip, E. (2015). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE,102(3), 366–385.

    Article  Google Scholar 

  12. Boccardi, F., Heath, R., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine,52(2), 74–80.

    Article  Google Scholar 

  13. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine,49(6), 101–107.

    Article  Google Scholar 

  14. Mezzavilla, M., Zhang, M., Polese, M., Member, S., Ford, R., Dutta, S., et al. (2018). End-to-end simulation of 5G mmWave networks. IEEE Communications Surveys & Tutorials,20(3), 2237–2263.

    Article  Google Scholar 

  15. Chaieb, C., Mlika, Z., Abdelkefi, F., & Ajib, W. (2017). On the user association and resource allocation in HetNets with mmWave BaseStations. In 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–5).

  16. Semiari, O., Saad, W., & Bennis, M. (2016). Downlink cell association and load balancing for joint millimeter wave-microwave cellular networks. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6). Wireless VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States.

  17. Rebato, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Hybrid spectrum sharing in mmWave cellular netwroks. IEEE Transactions On Cognitive Communications And Networking,3(2), 155–168.

    Article  Google Scholar 

  18. Parsaeefard, S., Dawadi, R., Derakhshani, M., & Le-Ngoc, T. (2016). Joint user-association and resource-allocation in virtualized wireless networks. IEEE Access,4, 2738–2750.

    Article  Google Scholar 

  19. Zhou, H., Ji, Y., Wang, X., & Zhao, B. (2015). Joint resource allocation and user association for SVC multicast over heterogeneous cellular networks. IEEE Transactions on Wireless Communications,14(7), 3673–3684.

    Article  Google Scholar 

  20. Azam, M. A., Ahmed, A., Naeem, M., Iqbal, M., Ejaz, W., Anpalagan, A., et al. (2017). Efficient joint user association and resource allocation for cloud radio access networks. IEEE Access,5, 1439–1448.

    Article  Google Scholar 

  21. Yanping, L., & Xuming, F. (2016). Joint user association and resource allocation for self-backhaul ultra-dense networks. China Communications,13(2), 1–10.

    Article  Google Scholar 

  22. Zhou, T.-Q., Huang, Y.-M., & Yang, L.-X. (2015). Joint user association and resource partitioning with QoS support for heterogeneous cellular networks. Wireless Personal Communications,83(1), 383–397.

    Article  Google Scholar 

  23. Liu, Y., Lu, L., Li, G. Y., Cui, Q., & Han, W. (2016). Joint user association and spectrum allocation for small cell networks with wireless backhauls. IEEE Wireless Communications Letters,5(5), 496–499.

    Article  Google Scholar 

  24. Gong, W., & Wang, X. (2015). Joint user association and resource allocation of device-to-device communication in small cell networks. KSII Transactions on Internet and Information Systems,9(1), 1–19.

    MathSciNet  Google Scholar 

  25. Feng, M., Mao, S., & Jiang, T. (2018). Joint frame design, resource allocation and user association for massive MIMO heterogeneous networks with wireless backhaul. IEEE Transactions on Wireless Communications,17(3), 1937–1950.

    Article  Google Scholar 

  26. Ekti, A. R., Wang, X., Ismail, M., Serpedin, E., & Qaraqe, K. A. (2016). Joint user association and data-rate allocation in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology,65(9), 7403–7414.

    Article  Google Scholar 

  27. Chen, Y., Li, J., Chen, W., Lin, Z., & Vucetic, B. (2016). Joint user association and resource allocation in the downlink of heterogeneous networks. IEEE Transactions on Vehicular Technology,65(7), 5701–5706.

    Article  Google Scholar 

  28. Zheng, J., Gao, L., Wang, H., Niu, J., Li, X., & Ren, J. (2017). EE-eICIC: Energy-efficient optimization of joint user association and ABS for eICIC in heterogeneous cellular networks. Wireless Communications & Mobile Computing,201, 1–11.

    Article  Google Scholar 

  29. Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications,35(9), 1936–1947.

    Article  Google Scholar 

  30. Zhou, T., Jiang, N., Liu, Z., & Li, C. (2018). Joint cell activation and selection for green communications in ultra-dense heterogeneous networks. IEEE Access,6, 1894–1904.

    Article  Google Scholar 

  31. Li, Y., Sheng, M., Sun, Y., & Shi, Y. (2016). Joint optimization of BS operation, user association, subcarrier assignment, and power allocation for energy-efficient HetNets. IEEE Journal on Selected Areas in Communications,34(12), 3339–3353.

    Article  Google Scholar 

  32. Zola, E., Kassler, A. J., & Kim, W. (2017). Joint user association and energy aware routing for green small cell mmWave backhaul networks. In 2017 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). Dept. of Network Engineering, UPC—BarcelonaTECH, Spain.

  33. Zhou, T., Liu, Z., Zhao, J., Li, C., & Yang, L. (2018). Joint user association and power control for load balancing in downlink heterogeneous cellular networks. IEEE Transactions on Vehicular Technology,67(3), 2582–2593.

    Article  Google Scholar 

  34. Semiari, O., Saad, W., & Bennis, M. (2016). Downlink cell association and load balancing for joint millimeter wave-microwave cellular networks. IEEE Global Communications Conference (GLOBECOM),2016, 1–6.

    Google Scholar 

  35. Ge, X., Li, X., Jin, H., Cheng, J., & Leung, V. C. M. (2018). Joint user association and user scheduling for load balancing in heterogeneous networks. IEEE Transactions on Wireless Communications,17(5), 3211–3225.

    Article  Google Scholar 

  36. Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine,42(3), 8–14.

    Article  Google Scholar 

  37. Ramazanali, H., Mesodiakaki, A., Vinel, A., & Verikoukis, C. (2016). Survey of user association in 5G HetNets. In 2016 8th IEEE Latin-American conference on communications (LATINCOM) (pp. 1–6).

  38. Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys and Tutorials,18(2), 1018–1044.

    Article  Google Scholar 

  39. Zhou, H., Xu, W., Bi, Y., Chen, J., Yu, Q., & Shen, X. S. (2017). Toward 5G spectrum sharing for immersive-experience-driven vehicular communications. IEEE Wireless Communications,24(6), 30–37.

    Article  Google Scholar 

  40. Massaro, M. (2017). Next generation of radio spectrum management: Licensed shared access for 5G. Telecommunications Policy,41(5–6), 422–433.

    Article  Google Scholar 

  41. Kour, H., Jha, R. K., & Jain, S. (2018). A comprehensive survey on spectrum sharing: Architecture, energy efficiency and security issues. Journal of Network and Computer Applications,103, 29–57.

    Article  Google Scholar 

  42. Yang, C., Li, J., Guizani, M., Anpalagan, A., & Elkashlan, M. (2016). Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wireless Communications,23(2), 94–101.

    Article  Google Scholar 

  43. Mustonen, M., Matinmikko, M., Holland, O., & Roberson, D. (2017). Process model for recent spectrum sharing concepts in policy making. Telecommunications Policy,41(5–6), 391–404.

    Article  Google Scholar 

  44. Miia Mustonen, A. M. P., Chen, Tao, Saarnisaari, Harri, & Marja Matinmikko, S. Y. (2014). Cellular architecture enhancement for licensed shared access concept supporting the European Licensed Shared access concept. IEEE Wireless Communications,21(3), 37–43.

    Article  Google Scholar 

  45. Bose, J. C. (1927). Collected physical papers (pp. 1–373). New York, NY: Longmans, Green and Co.

    MATH  Google Scholar 

  46. Sengupta, D. L., Sarkar, T. K., & Sen, D. (1998). Centennial of the semiconductor diode detector. Proceedings of the IEEE,86(1), 235–242.

    Article  Google Scholar 

  47. Emerson, D. T. (1997). The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques,45(12), 2267–2273.

    Article  Google Scholar 

  48. Marcus, M., & Pattan, B. (2005). Millimeter wave propagation: Spectrum management implications. IEEE Microwave Magazine,6(2), 54–62.

    Article  Google Scholar 

  49. Matinmikko, M., Latva-aho, M., Ahokangas, P., & Seppänen, V. (2018). On regulations for 5G: Micro licensing for locally operated networks. Telecommunications Policy,24(8), 622–635.

    Article  Google Scholar 

  50. Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., & Hanzo, L. (2018). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions and link-budget. IEEE Communications Surveys & Tutorials,20(2), 870–913.

    Article  Google Scholar 

  51. Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Transactions on Antennas and Propagation,65(12), 6213–6230.

    Article  Google Scholar 

  52. Elkashlan, M., Duong, T. Q., & Chen, H. H. (2014). Millimeter-wave communications for 5G: Fundamentals: Part I. IEEE Communications Magazine,52(9), 52–54.

    Article  Google Scholar 

  53. Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P., & Zorzi, M. (2015). Millimeter wave cellular networks: A MAC layer perspective. IEEE Transactions on Communications,63(10), 3437–3458.

    Article  Google Scholar 

  54. Qiu, Y., Zhang, H., Long, K., Huang, Y., Song, X., & Leung, V. C. M. (2018). Energy-efficient power allocation with interference mitigation in MmWave-based fog radio access networks. IEEE Wireless Communications,25(4), 25–31.

    Article  Google Scholar 

  55. FCC. (2016). Report and order and further notice of proposed rulemaking. Federal Communications Commission, FCC, 16–89

  56. Al-Falahy, N., & Alani, O. Y. (2017). Technologies for 5G networks: Challenges and opportunities. IT Professional,19(1), 12–20.

    Article  Google Scholar 

  57. Yu, Y., Baltus, P. G. M., & Roermund, A. H. M. van. (2011). Integrated 60 GHz RF Beamforming in CMOS. Springer Science & Business Media.

  58. Busari, S. A., Member, S., Mohammed, K., Huq, S., Member, S., & Mumtaz, S. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A Survey. IEEE Communications Surveys & Tutorials,20(2), 836–869.

    Article  Google Scholar 

  59. Shokri-Ghadikolaei, H., Boccardi, F., Fischione, C., Fodor, G., & Zorzi, M. (2016). Spectrum sharing in mmWave cellular networks via cell association, coordination, and beamforming. IEEE Journal on Selected Areas in Communications,34(11), 2902–2917.

    Article  Google Scholar 

  60. Gupta, A. K., Andrews, J. G., & Heath, R. W. (2016). On the feasibility of sharing spectrum licenses in mmWave cellular systems. IEEE Transactions on Communications,64(9), 3981–3995.

    Article  Google Scholar 

  61. Berraki, D. E., Armour, S. M. D., & Nix, A. R. (2014). Codebook based beamforming and multiuser scheduling scheme for mmWave outdoor cellular systems in the 28, 38 and 60 GHz bands. In 2014 IEEE Globecom workshops (GC Wkshps) (pp. 382–387).

  62. Ko, J., Cho, Y. J., Hur, S., Kim, T., Park, J., Molisch, A. F., et al. (2017). Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz. IEEE Transactions on Wireless Communications,16(9), 5853–5868.

    Article  Google Scholar 

  63. Lee, J. H., Choi, J. S., & Kim, S. C. (2018). Cell coverage analysis of 28 GHZ millimeter wave in urban microcell environment using 3-D ray tracing. IEEE Transactions on Antennas and Propagation,66(3), 1479–1487.

    Article  Google Scholar 

  64. Attiah, M. L., Isa, A. A. M., Zakaria, Z., Abdullah, N. F., Ismail, M., & Nordin, R. (2018). Adaptive multi-state millimeter wave cell selection scheme for 5G communications. International Journal of Electrical and Computer Engineering (IJECE),8(5), 2967–2978.

    Article  Google Scholar 

  65. Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications,21(6), 136–143.

    Article  Google Scholar 

  66. Busari, S. A., Member, S., Mohammed, K., Huq, S., Member, S., & Mumtaz, S. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials,20(2), 836–869.

    Article  Google Scholar 

  67. Asghar, A., Farooq, H., & Imran, A. (2018). On concurrent optimization of coverage, capacity and load balance in HetNets through joint self-organization of soft and hard cell association parameters. IEEE Transactions on Vehicular Technology,67(9), 8781–8795.

    Article  Google Scholar 

  68. Han, Q., Yang, B., Chen, C., & Guan, X. (2016). Energy-aware and QoS-aware load balancing for HetNets powered by renewable energy. Computer Networks,94, 250–262.

    Article  Google Scholar 

  69. Kyocera. (2010). Potential performance of range expansion in macro-pico deployment (r1-104355). In Proceedings of the 3GPP TSG RAN WG1 Meeting-62, Madrid, Spain (pp. 23–27).

  70. Al-rubaye, S., Senior, M., Al-dulaimi, A., Senior, M., Cosmas, J., et al. (2018). Call admission control for non-standalone 5G ultra-dense networks. IEEECommunications Letters,22(5), 1058–1061.

    Google Scholar 

  71. Tesema, F. B., Awada, A., Viering, I., Simsek, M., & Fettweis, G. P. (2017). Multiconnectivity for mobility robustness in standalone 5G ultra dense networks with intrafrequency cloud radio access. Wireless Communications and Mobile Computing, 2017(Volume 2017, Article ID 2038078).

  72. Kitindi, E. J., Fu, S. H. U., Jia, Y., Kabir, A., & Wang, Y. (2017). Wireless network virtualization with SDN and C-RAN for 5G networks: Requirements, opportunities, and challenges. IEEE Access,5, 19099–19115.

    Article  Google Scholar 

  73. Kamel, M., Member, S., Hamouda, W., & Member, S. (2019). Ultra-dense networks: A survey,18(4), 2522–2545.

    Google Scholar 

  74. Andrews, J. G., Singh, S., & Lin, X. (2014). An overview of load balancing in HetNets: old myths and open problems. IEEE Wireless Communications,21(2), 18–25.

    Article  Google Scholar 

  75. Chowdhury, M. Z., & Jang, Y. M. (2013). Handover management in high-dense femtocellular networks. Journal on Wireless Communications and Networking,1, 1–21.

    Google Scholar 

  76. Chen, S., Qin, F., Hu, B., Li, X., & Chen, Z. (2016). User-centric ultra-dense networks for 5G: Challenges, methodologies, and directions. IEEE Wireless Communications,23(2), 78–85.

    Article  Google Scholar 

  77. Mesodiakaki, A., Adelantado, F., Alonso, L., Di Renzo, M., & Verikoukis, C. (2017). Energy- and spectrum-efficient user association in millimeter-wave backhaul small-cell networks. IEEE Transactions on Vehicular Technology,66(2), 1810–1821.

    Article  Google Scholar 

  78. Mesodiakaki, A., Zola, E., & Kassler, A. (2017). User association in 5G heterogeneous networks with mesh millimeter wave backhaul links. In 18th IEEE international symposium on a world of wireless, mobile and multimedia networks, WoWMoM 2017 conference.

  79. Singh, S., Kulkarni, M. N., Ghosh, A., & Andrews, J. G. (2015). Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE Journal on Selected Areas in Communications,33(10), 2191–2211.

    Article  Google Scholar 

  80. Yanping, L., & Xuming, F. (2016). Joint user association and resource allocation for self-backhaul ultra-dense networks. China Communications,13(2), 1–10.

    Article  Google Scholar 

  81. Buzzi, S., Member, S., Member, S., Klein, T. E., Poor, V., Yang, C., et al. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications,34(4), 697–709.

    Article  Google Scholar 

  82. Munir, H., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2016). Energy efficient resource allocation in 5 g hybrid heterogeneous networks: A game theoretic approach. In: 2016 IEEE 84th vehicular technology conference (VTC-Fall) (pp. 1–5).

  83. Xu, B., Chen, Y., Elkashlan, M., Zhang, T., & Wong, K. K. (2016). User association in massive MIMO and mmWave enabled HetNets powered by renewable energy. IEEE Wireless Communications and Networking Conference (WCNC),2016, (pp. 1–6).

  84. Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks,21(8), 2657–2676.

    Article  Google Scholar 

  85. Bai, T., & Heath Jr., R. W. (2014). Analysis of self-body blocking effects in millimeter wave cellular networks. In 2014 48th Asilomar conference on signals, systems and computers (pp. 1921–1925).

  86. Bai, T., & Heath, R. W. (2015). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications,14(2), 1100–1114.

    Article  Google Scholar 

  87. Sattar, Z., Evangelista, J. V. C., Kaddoum, G., & Batani, N. (2018). Analysis of the cell association for decoupled wireless access in a two tier network. 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–6).

  88. Qiao, J., Cai, L. X., Shen, X. S., Mark, J. W., & Fellow, L. (2011). Enabling multi-hop concurrent transmissions in 60 GHz. Wireless Personal Area Networks,10(11), 3824–3833.

    Google Scholar 

  89. Wu, S., Member, S., Atat, R., & Member, S. (2018). Improving the coverage and spectral efficiency of millimeter-wave cellular networks using device-to-device relays. IEEE Transactions on Communications,66(5), 2251–2265.

    Article  Google Scholar 

  90. Boccardi, F., Andrews, J., Elshaer, H., Dohler, M., Parkvall, S., Popovski, P., et al. (2016). Why to decouple the uplink and downlink in cellular networks and how to do it. IEEE Communications Magazine,54(3), 110–117.

    Article  Google Scholar 

  91. Elshaer, H., Kulkarni, M. N., Boccardi, F., Andrews, J. G., & Dohler, M. (2016). Downlink and uplink cell association with traditional macrocells and millimeter wave small cells. IEEE Transactions on Wireless Communications,15(9), 6244–6258.

    Article  Google Scholar 

  92. Bhatti, O. W., Suhail, H., Akbar, U., Hassan, S. A., Pervaiz, H., Musavian, L., & Ni, Q. (2017). Performance analysis of decoupled cell association in multi-tier hybrid networks using real blockage environments. In 2017 13th International wireless communications and mobile computing conference (IWCMC) (pp. 62–67).

  93. Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications,14(7), 3899–3911.

    Article  Google Scholar 

  94. Umer, A., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2017). Coverage and rate analysis for massive mimo-enabled heterogeneous networks with millimeter wave small cells. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5)

  95. Xia, W., Zhang, J., Jin, S., & Zhu, H. (2017). Delay-based user association in heterogeneous networks with Backhaul. China Communications,14(10), 130–141.

    Article  Google Scholar 

  96. Ghatak, G., De Domenico, A., & Coupechoux, M. (2018). Modeling and analysis of HetNets with mm-Wave Multi-RAT small cells deployed along roads. In: 2017 IEEE global communications conference (GLOBECOM 2017) (pp. 1–7)

  97. Mezzavilla, M., Goyal, S., Panwar, S., Rangan, S., & Zorzi, M. (2016). An MDP model for optimal handover decisions in mmWave cellular networks. In: 2016 European conference on networks and communications (EuCNC) (pp. 100–105)

  98. Cacciapuoti, A. S. (2017). Mobility-aware user association for 5G mmWave networks. IEEE Access,5, 21497–21507.

    Article  Google Scholar 

  99. Shokri-Ghadikolaei, H., Xu, Y., Gkatzikis, L., & Fischione, C. (2015). User association and the alignment-Throughput tradeoff in millimeter wave networks. In 2015 IEEE 1st international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI) (pp. 100–105)

  100. Akyildiz, I. F., Lin, S., & Wang, P. (2015). Wireless software-defined networks (W-SDNs) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation. Computer Networks,93(1), 66–79.

    Article  Google Scholar 

  101. Lin, S. C., & Akyildiz, I. F. (2017). Dynamic base station formation for solving NLOS problem in 5G millimeter-wave communication. IEEE INFOCOM 2017-IEEE conference on computer communications.

  102. Kar, U. N., & Sanyal, D. K. (2018). An overview of device-to-device communication in cellular networks. ICT Express,4(4), 203–208.

    Article  Google Scholar 

  103. Yi, W., Liu, Y., & Nallanathan, A. (2017). Modeling and analysis of D2D millimeter-wave networks with poisson cluster processes. IEEE Transactions on Communications,65(12), 5574–5588.

    Article  Google Scholar 

  104. Kusaladharma, S., Zhang, Z., & Tellambura, C. (2018). Interference and outage analysis of random D2D networks underlaying millimeter wave cellular networks. IEEE Transactions on Communications,67(1), 778–790.

    Article  Google Scholar 

  105. Kim, J., Park, J., Kim, S., Kim, S. L., Sung, K. W., & Kim, K. S. (2018). Millimeter-wave interference avoidance via building-aware associations. IEEE Access,6, 10618–10634.

    Article  Google Scholar 

  106. Biswas, S., Vuppala, S., & Xue, J. (2016). On the performance of relay aided millimeter wave networks. IEEE Journal of Selected Topics in Signal Processing,10(3), 576–588.

    Article  Google Scholar 

  107. Xu, Y., Shokri-Ghadikolaei, H., & Fischione, C. (2016). Distributed association and relaying with fairness in millimeter wave networks. IEEE Transactions on Wireless Communications,15(12), 7955–7970.

    Article  Google Scholar 

  108. Giordani, M., Mezzavilla, M., & Zorzi, M. (2016). Initial access in 5G mmWave cellular networks. IEEE Communications Magazine,54(11), 40–47.

    Article  Google Scholar 

  109. Li, X., Fang, J., Li, H., & Wang, P. (2018). Millimeter wave channel estimation via exploiting joint sparse and low-rank structures. IEEE Transactions on Wireless Communications,17(2), 1123–1133.

    Article  Google Scholar 

  110. Barati, C. N., Hosseini, S. A., Mezzavilla, M., Korakis, T., Panwar, S. S., Rangan, S., et al. (2016). Initial access in millimeter wave cellular systems. IEEE Transactions on Wireless Communications,15(12), 7926–7940.

    Article  Google Scholar 

  111. Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., & Tujkovic, D. (2018). Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access,6, 37328–37348.

    Article  Google Scholar 

  112. Li, Y., Andrews, J. G., Baccelli, F., Novlan, T. D., & Zhang, C. (2016). Design and analysis of initial access in millimeter wave cellular networks. IEEE Transactions on Wireless Communications,16(10), 6409–6425.

    Article  Google Scholar 

  113. Liu, C., Li, M., Collings, I. B., Hanly, S. V., & Whiting, P. (2016). Design and analysis of transmit beamforming for millimetre wave base station discovery. IEEE Transactions on Wireless Communications,16(2), 797–811.

    Article  Google Scholar 

  114. Liu, C., Li, M., Hanly, S. V., Collings, I. B., & Whiting, P. (2017). Millimeter wave beam alignment: Large deviations analysis and design insights. IEEE Journal on Selected Areas in Communications,35(7), 1619–1631.

    Google Scholar 

  115. Qi, Z., & Liu, W. (2018). Three-dimensional millimetre-wave beam tracking based on smart phone sensor measurements and direction of arrival/time of arrival estimation for 5G networks. IET Microwaves, Antennas and Propagation,12(3), 271–279.

    Article  Google Scholar 

  116. Zhang, J., Huang, Y., Shi, Q., Wang, J., & Yang, L. (2017). Codebook design for beam alignment in millimeter wave communication systems. IEEE Transactions on Communications,65(11), 4980–4995.

    Article  Google Scholar 

  117. Song, X., Haghighatshoar, S., & Caire, G. (2018). A scalable and statistically robust beam alignment technique for mm-wave systems. IEEE Transactions on Wireless Communications,17(7), 4792–4805.

    Article  Google Scholar 

  118. Zang, S., Bao, W., Yeoh, P. L., Chen, H., Lin, Z., Vucetic, B., & Li, Y. (2017). Mobility handover optimization in millimeter wave heterogeneous networks. In 2017 17th International symposium on communications and information technologies (ISCIT) (pp. 1–6)

  119. Omar, M. S., Anjum, M. A., Hassan, S. A., Pervaiz, H., & Niv, Q. (2016). Performance analysis of hybrid 5G cellular networks exploiting mmWave capabilities in suburban areas. In IEEE international conference on communications (ICC) (pp. 1–6).

  120. Chih-Lin, I., Han, S., Xu, Z., Sun, Q., & Pan, Z. (2016). 5G: Rethink mobile communications for 2020+. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,374(2062), 1–13.

    Article  Google Scholar 

  121. Semiari, O., Saad, W., Member, S., Bennis, M., & Member, S. (2018). Caching meets millimeter wave communications for enhanced mobility management in 5G networks. IEEE Transactions on Wireless Communications,17(2), 779–793.

    Article  Google Scholar 

  122. Arshad, R., Elsawy, H., Sorour, S., Al-Naffouri, T. Y., & Alouini, M. S. (2016). Handover management in 5G and beyond: A topology aware skipping approach. IEEE Access,4, 9073–9081.

    Article  Google Scholar 

  123. Fan, P., & Zhao, J. (n.d.). 5G High Mobility Wireless Communications: Challenges and Solutions. China Communications, 13(Suppl 2), 1–13.

  124. Ren, X., Chen, W., Member, S., Tao, M., & Member, S. (2015). Position-based compressed channel estimation and pilot design for high-mobility OFDM systems. IEEE Transactions on Vehicular Technology,64(5), 1918–1929.

    Article  Google Scholar 

  125. Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal on Selected Topics in Signal Processing,10(3), 436–453.

    Article  Google Scholar 

  126. Ali, E., Ismail, M., Nordin, R., & Abdulah, N. F. (2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering,18(6), 753–772.

    Article  Google Scholar 

  127. Gupta, A., Member, S., Jha, R. K., & Member, S. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE access,3, 1206–1232.

    Article  Google Scholar 

  128. Ren, H., Liu, N., Pan, C., Elkashlan, M., Nallanathan, A., You, X., et al. (2018). Low-latency C-RAN: An next-generation wireless approach. IEEE Vehicular Technology Magazine,13(2), 48–56.

    Article  Google Scholar 

  129. Hsieh, P. J., Lin, W. S., Lin, K. H., & Wei, H. Y. (2018). Dual-connectivity prevenient handover scheme in control/user-plane split networks. IEEE Transactions on Vehicular Technology,67(4), 3545–3560.

    Article  Google Scholar 

  130. Pan, M. S., Lin, T. M., & Chen, W. T. (2015). An enhanced handover scheme for mobile relays in LTE-A high-speed rail networks. IEEE Transactions on Vehicular Technology,64(2), 743–756.

    Article  Google Scholar 

  131. Semiari, O., Saad, W., Bennis, M., & Maham, B. (2017). Mobility management for heterogeneous networks: Caching meets millimeter wave to provide seamless handover. In GLOBECOM 20172017 IEEE global communications conference (pp. 1–6).

  132. Chen, M., Hao, Y., Hu, L., Huang, K., & Lau, V. K. N. (2017). Green and mobility-aware caching in 5G networks. IEEE Transactions on Wireless Communications,16(12), 8347–8361.

    Article  Google Scholar 

  133. Kela, P., Turkka, J., & Costa, M. (2015). Borderless mobility in 5G outdoor ultra-dense networks. IEEE Access,3, 1462–1476.

    Article  Google Scholar 

  134. Vasudeva, K., Dikmese, S., Guvenc, I., Mehbodniya, A., Saad, W., & Adachi, F. (2017). Fuzzy based game theoretic mobility management for energy efficient operation in HetNets. IEEE Access,3536, 7542–7552.

    Article  Google Scholar 

  135. Lu, Y., Xiong, K., Fan, P., Zhong, Z., & Ai, B. (2017). The Effect of power adjustment on handover in high-speed railway communication networks. IEEE Access,5, 26237–26250.

    Article  Google Scholar 

  136. Mohamed, A., Imran, M. A., Xiao, P., & Tafazolli, R. (2018). Memory-full context-aware predictive mobility management in dual connectivity 5G networks. IEEE Access,6, 9655–9666.

    Article  Google Scholar 

  137. Zhao, J., Liu, Y., Gong, Y., Wang, C., & Fan, L. (2018). A dual-link soft handover scheme for C/U plane split network in high-speed railway. IEEE Access,6, 12473–12482.

    Article  Google Scholar 

  138. Arshad, R., ElSawy, H., Sorour, S., Al-Naffouri, T. Y., & Alouini, M. S. (2017). Velocity-aware handover management in two-tier cellular networks. IEEE Transactions on Wireless Communications,16(3), 1851–1867.

    Article  Google Scholar 

  139. Bilen, T., Canberk, B., & Chowdhury, K. R. (2017). Handover management in software-defined ultra-dense 5G networks. IEEE Network,31(4), 49–55.

    Article  Google Scholar 

  140. Zhang, H., Qiu, Y., Chu, X., Long, K., & Leung, V. C. M. (2017). Fog radio access networks: Mobility a, interference mitigation and resource optimization. IEEE Wireless Communications,24(6), 120–127.

    Article  Google Scholar 

  141. Chochlidakis, G., & Friderikos, V. (2017). Mobility aware virtual network embedding. IEEE Transactions on Mobile Computing,16(5), 1343–1356.

    Article  Google Scholar 

  142. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A. H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine,55(8), 138–145.

    Article  Google Scholar 

  143. Niknam, S., Member, S., Natarajan, B., & Member, S. (2018). Interference analysis for finite-area 5G mmWave networks considering blockage effect. IEEE Access,6, 23470–23479.

    Article  Google Scholar 

  144. Han, K., Cui, Y., Wu, Y., & Huang, K. (2018). The connectivity of millimeter-wave networks in urban environments modeled using random lattices. IEEE Transactions on Wireless Communications,17(5), 3357–3372.

    Article  Google Scholar 

  145. Moltchanov, D., Ometov, A., Andreev, S., & Koucheryavy, Y. (2018). Upper bound on capacity of 5G mmWave cellular with multi-connectivity capabilities. Electronics Letters,54(11), 11–12.

    Article  Google Scholar 

  146. Choi, J. (2014). On the macro diversity with multiple BSs to mitigate blockage in millimeter-wave communications. IEEE Communications Letters,18(9), 1623–1656.

    Article  Google Scholar 

  147. Gupta, A. K., Andrews, J. G., & Heath, R. W. (2017). Macrodiversity in cellular networks with random blockages. IEEE Transactions on Wireless Communications,17(2), 996–1010.

    Article  Google Scholar 

  148. Niu, Y., Gao, C., Li, Y., Su, L., & Jin, D. (2016). Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks,18(3), 364–374.

    Article  Google Scholar 

  149. Chelli, A. L. I., & Kansanen, K. (2018). On bit error probability and power optimization in multihop millimeter wave relay systems. IEEE Access,6, 3794–3808.

    Article  Google Scholar 

  150. Belbase, K., Tellambura, C., & Jiang, H. (2018). Two-way relay selection for millimeter wave networks. IEEE Communications Letters,22(1), 201–204.

    Article  Google Scholar 

  151. Filippini, I., Member, S., & Sciancalepore, V. (2018). Fast cell discovery in mm-Wave 5G networks with context information. IEEE Transactions on Mobile Computing,17(7), 1538–1552.

    Article  Google Scholar 

  152. Park, J., Kim, S. L., & Zander, J. (2016). Tractable resource management with uplink decoupled millimeter-wave overlay in ultra-dense cellular networks. IEEE Transactions on Wireless Communications,15(6), 4362–4379.

    Article  Google Scholar 

  153. Mastrosimone, A., & Panno, D. (2017). Moving network based on mmWave technology: A promising solution for 5G vehicular users. Wireless Networks,24(7), 2409–2426.

    Article  Google Scholar 

  154. Hetnets, C. C. T., Guo, L., & Cong, S. (2017). Coverage and rate analysis for location-aware cross-tier cooperation in two-tier HetNets. Symmetry,9(8), 1–21.

    MathSciNet  MATH  Google Scholar 

  155. Pervez, F., Jaber, M., & Member, S. (2018). Memory-based user-centric backhaul-aware user cell association scheme. IEEE Access,6, 39595–39605.

    Article  Google Scholar 

  156. Luo, Z., LiWang, M., Lin, Z., Huang, L., Du, X., & Guizani, M. (2017). Energy-efficient caching for mobile edge computing in 5G networks. Applied Sciences,7(6), 557.

    Article  Google Scholar 

  157. Clarke, R. N. (2014). Expanding mobile wireless capacity: The challenges presented by technology and economics. Telecommunications Policy,38(8–9), 693–708.

    Article  Google Scholar 

  158. Cave, M., Doyle, C., & Webb, W. (2007). Essentials of modern spectrum management. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  159. Ye, D. (2016). Heterogeneous cognitive networks: Spectrum sharing with adaptive opportunistic DSMA for collaborative PCP-OFDM system. Wireless Networks,22(1), 351–366.

    Article  Google Scholar 

  160. Ghatak, G., Domenico, A. De, & Coupechoux, M. (2018). Coverage analysis and load balancing in HetNets with mmWave multi-RAT small cells. IEEE Transactions on Wireless Communications,17(5), 3154–3169.

    Article  Google Scholar 

  161. Park, J., Andrews, J. G., & Heath, R. W. (2017). Inter-operator base station coordination in spectrum-shared millimeter wave cellular networks. IEEE Transactions on Cognitive Communications and Networking,4(3), 513–528.

    Article  Google Scholar 

  162. Wang, H., Chen, X., Zaidi, A. A., Luo, J., & Dieudonne, M. (2018). Waveform evaluations subject to hardware impairments for mm-wave mobile communications. Wireless Networks,6, 1–15.

    Google Scholar 

  163. Attiah, M. L., Ismail, M., Nordin, R., & Abdullah, N. F. (2016). Dynamic multi-state ultra-wideband mm-wave frequency selection for 5G communication. In 2015 IEEE 12th Malaysia international conference on communications (MICC 2015) (pp. 219–224).

  164. Kim, T., Park, J., Seol, J. Y., Jeong, S., Cho, J., & Roh, W. (2013). Tens of Gbps support with mmWave beamforming systems for next generation communications. IEEE Global Communications Conference (GLOBECOM),2013, 3685–3690.

    Google Scholar 

  165. Rebato, M., Boccardi, F., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Hybrid spectrum sharing in mmwave cellular networks. IEEE Transactions on Cognitive Communications and Networking,3(2), 155–168.

    Article  Google Scholar 

  166. Bala, I., Bhamrah, M. S., & Singh, G. (2015). Capacity in fading environment based on soft sensing information under spectrum sharing constraints. Wireless Networks,23(2), 519–531.

    Article  Google Scholar 

  167. Boccardi, F., Shokri-Ghadikolaei, H., Fodor, G., Erkip, E., Fischione, C., Kountouris, M., et al. (2016). Spectrum pooling in MmWave networks: opportunities, challenges, and enablers. IEEE Communications Magazine,54(11), 33–39.

    Article  Google Scholar 

  168. Li, G., Irnich, T., & Shi, C. (2014). Coordination context - based spectrum sharing for 5G millimeter—wave networks. In 2014 9th international conference on cognitive radio orient-ed wireless networks and communications (CROWNCOM) (pp. 32–38).

  169. Rebato, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2016). Resource sharing in 5G mmWave cellular networks. In 2016 IEEE conference on computer communications work-shops (INFOCOM WKSHPS) (pp. 271–276).

  170. Rebato, M., Boccardi, F., Mezzavilla, M., Rangan, S., & Zorzi, M. (2016). Hybrid spectrum access for mmWave networks. In 2016 mediterranean ad hoc networking workshop (Med-Hoc-Net) (pp. 1–7).

  171. Jurdi, R., Gupta, A. K., Andrews, J. G., & Heath, R. W. (2018). Modeling infrastructure sharing in mmwave networks with shared spectrum licenses. IEEE Transactions on Cognitive Communications and Networking,4(2), 328–343.

    Article  Google Scholar 

  172. Fund, F., Shahsavari, S., Panwar, S. S., Erkip, E., & Rangan, S. (2017). Resource sharing among mmWave cellular service providers in a vertically differentiated duopoly. In 2017 IEEE international conference on communications (ICC) (pp. 1–7).

  173. Di Renzo, M. (2015). Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks. IEEE Transactions on Wireless Communications,14(9), 5038–5057.

    Article  Google Scholar 

  174. Rebato, M., Mezzavilla, M., Rangan, S., Boccardi, F., & Zorzi, M. (2016). Understanding noise and interference regimes in 5G millimeter-wave cellular networks (pp. 84–88).

  175. Attiah, M. L., Isa, A. A. M., Zakaria, Z., Ismail, M., Nordin, R., & Abdullah, N. F. (2018). Coverage probability optimisation by utilizing flexible hybrid mmWave spectrum slicing—sharing access strategy for 5G cellular systems. Journal of Telecommunication, Electronic and Computer Engineering,10(2), 91–98.

    Google Scholar 

  176. Ullah, U., Dilshad, N., Husain, M., & Umer, T. (2016). Fairness in cognitive radio networks: Models, measurement methods, applications, and future research directions. Journal of Network and Computer Applications,73, 12–26.

    Article  Google Scholar 

  177. Tang, J., Misra, S., & Xue, G. (2008). Joint spectrum allocation and scheduling for fair spectrum sharing in cognitive radio wireless networks. Computer Networks,52(11), 2148–2158.

    Article  MATH  Google Scholar 

  178. Cano, L., Capone, A., Carello, G., Cesana, M., & Passacantando, M. (2016). Cooperative infrastructure and spectrum sharing in heterogeneous mobile networks. IEEE Journal on Selected Areas in Communications,34(10), 2617–2629.

    Article  Google Scholar 

  179. Merwaday, A., Yuksel, M., Quint, T., Güvenç, I., Saad, W., & Kapucu, N. (2018). Incentivizing spectrum sharing via subsidy regulations for future wireless networks. Computer Networks,135, 132–146.

    Article  Google Scholar 

  180. Copeland, R., Crespi, N., Copeland, R., & Crespi, N. (2011). Modelling multi-MNO business for MVNOs in their evolution to LTE, VoLTE advanced policy To cite this version: HAL Id: hal-00766676 Evolution to LTE, VoLTE & Advanced Policy. In 2011 15th international conference on intelligence in next generation networks (pp. 295–300).

  181. Kapucu, N., Haupt, B., & Yuksel, M. (2018). Spectrum sharing policy: Interoperable communication and information sharing for public safety. Risk, Hazards & Crisis in Public Policy,9(1), 39–59.

    Article  Google Scholar 

  182. Kang, D. H., Sung, K. W., & Zander, J. (2013). High capacity indoor and hotspot wireless systems in shared spectrum: A techno-economic analysis. IEEE Communications Magazine,51(12), 102–109.

    Article  Google Scholar 

  183. Mustonen, M., Matinmikkoi, M., Roberson, D., & Yrja, S. (2014). Evaluation of recent spectrum sharing models from the regulatory point of view. In 1st international conference on 5G for ubiquitous connectivity (pp. 11–16).

  184. Wang, R. U. I., Hu, H., Member, S., & Yang, X. (2014). Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access,2, 1187–1195.

    Article  Google Scholar 

  185. Narmanlioglu, O., & Zeydan, E. (2017). New Era in shared cellular networks: Moving into open and virtualized platform. International Journal of Network Management,27(6), 1–19.

    Article  Google Scholar 

  186. Feng, W., Li, Y., Jin, D., Su, L., & Chen, S. (2016). Millimetre-wave backhaul for 5G networks: Challenges and solutions. Sensors (Switzerland),16(6), 1–17.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge UTeM Zamalah Scheme, Universiti Teknikal Malaysia Melaka (UTeM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mothana L. Attiah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attiah, M.L., Isa, A.A.M., Zakaria, Z. et al. A survey of mmWave user association mechanisms and spectrum sharing approaches: an overview, open issues and challenges, future research trends. Wireless Netw 26, 2487–2514 (2020). https://doi.org/10.1007/s11276-019-01976-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-01976-x

Keywords

Navigation