Skip to main content
Log in

Accuracy and availability modeling of social networks for Internet of Things event detection applications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

As Social networks are widely used by the people around the world, if this infrastructure can be used for event detection systems like fire forest detection, the overall cost of the Internet of Thing event detection system cost may be considerably reduced. However, other parameters such as event detection accuracy and system availability may be affected as well. The present research investigates these parameters for famous social networks such as Instagram, Twitter and Facebook in different network sizes and server request submission limitations. A new web platform was implemented based on smart objects to produce the appropriate data for social network analysis tools such as NodeXL. A new simulator generated the data from the Drossel and Schwabl algorithm in various situations and types of social networks. Then the outputs created models by a multilayer perceptron artificial neural network for accuracy and availability. A cost analysis for each method was performed. The results showed that the produced models had good reliability and could be used to select the appropriate method before implementing the Internet of Things projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Zhou, J., Cao, Z., Dong, X., & Vasilakos, A. V. (2017). Security and privacy for cloud-based IoT: Challenges. IEEE Communications Magazine, 55(1), 26–33.

    Article  Google Scholar 

  2. Atzori, L., Iera, A., Morabito, G., & Nitti, M. (2012). The social internet of things (SIoT)—When social networks meet the internet of things: Concept, architecture and network characterization. Comput. Networks, 56(16), 3594–3608.

    Article  Google Scholar 

  3. Atzori, L., Iera, A., & Morabito, G. (2011). SIoT: Giving a social structure to the internet of things. IEEE Communications Letters, 15(11), 1193–1195.

    Article  Google Scholar 

  4. Atzori, L., Iera, A., & Morabito, G. (2011). Making things socialize in the Internet—Does it help our lives?. In Proceedings of ITU Kaleidosc. Fully Networked human ? Innovations for future networks and services (pp. 1–8).

  5. Ortiz, A. M., Hussein, D., Park, S., Han, S. N., & Crespi, N. (2014). The cluster between internet of things and social networks: Review and research challenges. IEEE Internet of Things Journal, 1(3), 206–215.

    Article  Google Scholar 

  6. Atzori, L., Carboni, D., & Iera, A. (2014). Smart things in the social loop: Paradigms, technologies, and potentials. Ad Hoc Networks, 18, 121–132.

    Article  Google Scholar 

  7. Zhang, C., Cheng, C., & Ji, Y. (2012) Architecture design for social web of things. In Proceedings of the 1st international workshop on context discovery and data miningcontextdd’12 (p. 1).

  8. Ciortea, A., Boissier, O., Zimmermann, A., & Florea, A. M. (2013). Reconsidering the social web of things. In Proceedings of the 2013 ACM conference on pervasive and ubiquitous computing adjunct publicationUbiComp’13 Adjunct (pp. 1535–1544).

  9. Pintus, A., Carboni, D., & Piras, A. (2012). PARAIMPU: A platform for a social web of things. In Proceedings of the 21st international conference companion on World Wide Web - WWW’12 Companion (p. 401).

  10. Guinard, D., Fischer, M., & Trifa, V. (2010). Sharing using social networks in a composable Web of Things. In 2010 8th IEEE international conference on pervasive computing and communications workshops (PERCOM workshops) (pp. 702–707).

  11. Lequerica, I., Longaron, M., & Ruiz, P. (2010). Drive and share: Efficient provisioning of social networks in vehicular scenarios. IEEE Communications Magazine, 48(11), 90–97.

    Article  Google Scholar 

  12. Mäkitalo, N. et al. (2012). Social devices: collaborative co-located interactions in a mobile cloud. In Proceedings of the 11th international conference on mobile and ubiquitous multimediaMUM’12 (p. 1).

  13. Console, L., et al. (2013). Interacting with social networks of intelligent things and people in the world of gastronomy. ACM Transactions on Interactive Intelligent Systems, 3(1), 1–38.

    Article  Google Scholar 

  14. Ceipidor, A. U., Medaglia, C., Volpi, V., Moroni, A., Sposato, S., & Tamburrano, M. (2011). Design and development of a social shopping experience in the IoT domain: The ShopLovers solution. In Proceedings of 19th international conference on software, telecommunications and computer networks (SoftCOM) (pp. 102–111).

  15. Vlacheas, P., et al. (2013). Enabling smart cities through a cognitive management framework for the internet of things. IEEE Communications Magazine, 51(6), 102–111.

    Article  Google Scholar 

  16. Hussein, D., Han, S. N., Han, X., Lee, G. M., & Crespi, N. (2013). A framework for social device networking. In 2013 IEEE international conference on distributed computing in sensor systems (pp. 356–360).

  17. Nakamura, E. F., & Souza, E. L. (2010). Towards a flexible event-detection model for wireless sensor networks. In The IEEE symposium on computers and communications (pp. 459–462).

  18. Zeng, X., Garg, S. K., Strazdins, P., Jayaraman, P. P., Georgakopoulos, D., & Ranjan, R. (2017). IOTSim: A simulator for analysing IoT applications. Journal of Systems Architecture, 72, 93–107.

    Article  Google Scholar 

  19. Kasnesis, P., Toumanidis, L., Kogias, D., Patrikakis, C. Z. & Venieris, I. S. (216). ASSIST: An agent-based SIoT simulator. In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT) (pp. 353–358).

  20. Li, Z., Chen, R., Liu, L., & Min, G. (2016). Dynamic resource discovery based on preference and movement pattern similarity for large-scale social Internet of Things. IEEE Internet of Things Journal, 3(4), 581–589.

    Article  Google Scholar 

  21. Hasan, M., Orgun, M. A., & Schwitter, R. (2017). A survey on real-time event detection from the Twitter data stream. Journal of Information Science, 44(4), 443–463.

    Article  Google Scholar 

  22. Atefeh, F., & Khreich, W. (2015). A survey of techniques for event detection in Twitter. Computational Intelligence, 31(1), 133–164.

    Article  MathSciNet  Google Scholar 

  23. Yang, Y., Pierce, T. & Carbonell, J. (1998). A study of retrospective and on-line event detection. In Proceedings of the 21st Annual international ACM SIGIR conference on research and development in information retrievalSIGIR’98 (pp. 28–36)

  24. Metzler, D., Cai, C., & Hovy, E. (2012). Structured event retrieval over microblog archives. In Proc. 2012 Conf. North (pp. 646–655).

  25. Popescu, A.-M., Pennacchiotti, M., & Paranjpe, D. (2011). Extracting events and event descriptions from Twitter. In Proceedings of the 20th international conference companion on World Wide WebWWW’11 (Vol. 1, pp. 105).

  26. Sankaranarayanan, J., Samet, H. Teitler, B. E., Lieberman, M. D., & Sperling, J. (2009) TwitterStand: News in Tweets. In Proceedings of 17th ACM SIGSPATIAL international conference on advances in geographic information systems.GIS’09 (p. 42).

  27. Li, C., Sun, A., & Datta, A. (2012). Twevent: Segment-based event detection from Tweets. Cikm (pp. 155–164).

  28. Jarvis, R. A., & Patrick, E. A. (1973). Clustering using a similarity measure based on shared near neighbors. IEEE Transactions on Computers, 22(11), 1025–1034.

    Article  Google Scholar 

  29. Mathioudakis M., & Koudas, N. (2010). TwitterMonitor: Trend detection over the Twitter Stream. In Sigmod (pp. 5–7).

  30. Alvanaki, F., Michel, S., Ramamritham, K., & Weikum, G. (2011). EnBlogue: Emergent topic detection in Web 2.0 streams. In Proceedings of ACM SIGMOD international conference on management of data (pp. 1271–1274).

  31. Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: A novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107–144.

    Article  MathSciNet  Google Scholar 

  32. Stilo, G., & Velardi, P. (2016). Efficient temporal mining of micro-blog texts and its application to event discovery. Data Mining and Knowledge Discovery, 30(2), 372–402.

    Article  MathSciNet  Google Scholar 

  33. Golsorkhtabaramiri, M., Hosseinzadeh, M., Reshadi, M., & Rahmani, A. M. (2015). A reader anti-collision protocol for RFID-enhanced wireless sensor networks. Wireless Personal Communications, 81(2), 893–905.

    Article  Google Scholar 

  34. Rostampour, S., Bagheri, N., Hosseinzadeh, M., & Khademzadeh, A. (2018). A scalable and lightweight grouping proof protocol for internet of things applications. The Journal of Supercomputing, 74(1), 71–86.

    Article  Google Scholar 

  35. Jabbarpour, M. R., Zarrabi, H., Khokhar, R. H., Shamshirband, S., & Choo, K. K. R. (2018). Applications of computational intelligence in vehicle traffic congestion problem: A survey. Soft Computing, 22(7), 2299–2320.

    Article  Google Scholar 

  36. Aynehband, M., & Moeinpoor, M. (2016). The use of remote control systems for autonomous domestic industry in adverse weather. International Journal of Novel Computer Science and Power Solutions, 1(1), 13–15.

    Google Scholar 

  37. Aynehband, M., Rahmani, A. M., & Setayeshi, S. (2011).COAST: Context-aware pervasive speech recognition system. In International symposium on wireless and pervasive computing, ISWPC 2011.

  38. “OAuth 2.0.” [Online]. Available: https://oauth.net/articles/authentication/.

  39. Smith, M. A. et al. (2009). Analyzing (social media) networks with NodeXL. In Proceedings of the fourth international conference on communities and technologiesC&T’09 (p. 255).

  40. Casey, K. (2017). The Internet of Things on its edge. Dell Power More (p. 11).

  41. Martinho, R., & Domingos, D. (2014). Quality of information and access cost of IoT resources in BPMN processes. Procedia Technology, 16, 737–744.

    Article  Google Scholar 

  42. Singh, K. D., & Joshi, A. K. (2017) Cost effective open source wireless body sensor networking through zigBee. In 2017 International Conference on Communication and Signal Processing (ICCSP). IEEE. https://doi.org/10.1109/ICCSP.2017.8286491.

  43. Abbasinezhad-Mood, D., & Nikooghadam, M. (2017). An ultra-lightweight and secure scheme for communications of smart meters and neighborhood gateways by utilization of an ARM Cortex-M microcontroller. IEEE Transactions on Smart Grid, 3053, 6194–6205.

    Google Scholar 

  44. Drossel, B., & Schwabl, F. (1992). Self-organized critical forest-fire model. Physical Review Letters, 69(11), 1629–1632.

    Article  Google Scholar 

  45. Nabaei, A., et al. (2018). Topologies and performance of intelligent algorithms: A comprehensive review. Artificial Intelligence Review, 49(1), 79–103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hosseinzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aynehband, M., Hosseinzadeh, M., Zarrabi, H. et al. Accuracy and availability modeling of social networks for Internet of Things event detection applications. Wireless Netw 25, 4299–4317 (2019). https://doi.org/10.1007/s11276-019-02093-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02093-5

Keywords

Navigation