Skip to main content

Advertisement

Log in

Multi-objective computation offloading for Internet of Vehicles in cloud-edge computing

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The Internet of Vehicles (IoV) has gained worldwide attentions as it provides the service of collecting real-time traffic information to improve the road safety. The IoV users can offload their computing tasks to the edge computing devices (ECDs) for low latency execution and the cloud can be engaged to process big data with sufficient computing resources. Though galactic convenience brought by the IoV cloud-edge computing system, it remains a challenge to manage the resource of ECDs by reducing the energy and time consumption while avoiding the situation of overload or underload of the ECDs to maintain the system-stability. Moreover, during the movement of the vehicles, the computing tasks and data may be uploaded to different ECDs and the data continuity may be destroyed. In this paper, a multi-objective computation offloading method (MOC) for IoV in cloud-edge computing is proposed to deal with the challenges above. A vehicle-to-vehicle communication-based route obtaining algorithm is designed first. Then, in order to ensure the trustworth of the IoV data, which ECD to upload the computing tasks to is selected. Under the case that all ECDs are overloaded, the computation offloading between ECDs and cloud is considered. In addition, non-dominated sorting genetic algorithm III is adopted to realize the multi-objective optimization of decreasing the load balancing rate and reduce the energy consumption in ECDs and shorten the time during processing the computing tasks. Furthermore, we employ the simple additive weighting and multiple criteria decision making to evaluate the solutions of our proposed method. Finally, experimental evaluations are conducted to validate the efficiency and effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Maasberg, M., & Choo, K. K. R. (2018). Multimedia big data computing and Internet of Things applications: A taxonomy and process model. Journal of Network and Computer Applications, 124, 169–195.

    Article  Google Scholar 

  2. Wang, X., Yang, L. T., Xia, X., Jin, J., & Deen, M. J. (2017). A cloud-edge computing framework for cyber-physical–social services. IEEE Communications Magazine, 55(11), 80–85.

    Article  Google Scholar 

  3. Salahuddin, M. A., Al-Fuqaha, A., & Guizani, M. (2015). Software-defined networking for RSU clouds in support of the internet of vehicles. IEEE Internet of Things journal, 2(2), 133.

    Article  Google Scholar 

  4. Singh, D., & Singh, M. (2015). Internet of vehicles for smart and safe driving. In 2015 international conference on connected vehicles and expo (ICCVE) (pp. 328–329). IEEE.

  5. Fangchun, Y., Shangguang, W., Jinglin, L., Zhihan, L., & Qibo, S. (2014). An overview of internet of vehicles. China Communications, 11(10), 1.

    Google Scholar 

  6. Wang, M., Wu, J., Li, G., Li, J., Li, Q., & Wang, S. (2017). Toward mobility support for information-centric IoV in the smart city using fog computing. In 5th international proceedings of the smart energy grid engineering conference (SEGE) (pp 357–361).

  7. Alrawais, A., Alhothaily, A., Yu, J., Hu, C., & Cheng, X. (2018). SecureGuard: A certificate validation system in public key infrastructure. IEEE Transactions on Vehicular Technology, 67(6), 5399–5408.

    Article  Google Scholar 

  8. Wang, X., Yang, L. T., Kuang, L., Liu, X., Zhang, Q., & Deen, M. J. (2019). A tensor-based big-data-driven routing recommendation approach for heterogeneous networks. IEEE Network, 33, 64–69.

    Article  Google Scholar 

  9. Wan, S., Zhang, Y., & Chen, J. (2016). On the construction of data aggregation tree with maximizing lifetime in large-scale wireless sensor networks. IEEE Sensors Journal, 16(20), 7433.

    Article  Google Scholar 

  10. Sharma, S., Awan, M. B., & Mohan, S. (2017). Cloud enabled cognitive radio adhoc vehicular networking (CRAVENET) with security aware resource management and internet of vehicles (IoV) applications. In 2017 IEEE international conference on advanced networks and telecommunications systems (ANTS) (pp. 1–6). IEEE.

  11. Qi, L., Wang, R., Hu, C., Li, S., He, Q., & Xu, X. (2019). Time-aware distributed service recommendation with privacy-preservation. Information Sciences, 480, 354.

    Article  Google Scholar 

  12. Jiang, T., Chen, X., Li, J., Wong, D. S., Ma, J., & Liu, J. K. (2015). Towards secure and reliable cloud storage against data re-outsourcing. Future Generation Computer Systems, 52, 86.

    Article  Google Scholar 

  13. Zhang, J., Xie, N., Zhang, X., Yue, K., Li, W., & Kumar, D. (2018). Machine learning based resource allocation of cloud computing in auction. Computers, Computers Materials and Contihua, 56, 123–135.

    Google Scholar 

  14. Wu, X., Zhang, C., Zhang, R., Wang, Y., & Cui, J. (2018). A distributed intrusion detection model via nondestructive partitioning and balanced allocation for big data. Computers Materials and Contihua, 56, 61–72.

    Google Scholar 

  15. Xia, Y., Luo, X., Li, J., & Zhu, Q. (2013). A petri-net-based approach to reliability determination of ontology-based service compositions. IEEE Transactions on Systems Man and Cybernetics Part B, 43(5), 1240.

    Article  Google Scholar 

  16. He, X., Ren, Z., Shi, C., & Fang, J. (2016). A novel load balancing strategy of software-defined cloud/fog networking in the internet of vehicles. China Communications, 13(Supplement2), 140.

    Article  Google Scholar 

  17. Qi, L., Chen, Y., Yuan, Y., Fu, S., Zhang, X., & Xu, X. (2019). A QoS-aware virtual machine scheduling method for energy conservation in cloud-based cyber-physical systems. World Wide Web, 1–23.

  18. Qi, L., Zhang, X., Dou, W., & Ni, Q. (2017). A distributed locality-sensitive hashing-based approach for cloud service recommendation from multi-source data. IEEE Journal on Selected Areas in Communications, 35(11), 2616.

    Article  Google Scholar 

  19. Wang, X., Yang, L. T., Li, H., Lin, M., Han, J., & Apduhan, B. O. (2019). NQA: A nested anti-collision algorithm for RFID systems. ACM Transactions on Embedded Computing Systems, 18(4), 32.

    Article  Google Scholar 

  20. Lin, W., Xu, S., He, L., & Li, J. (2017). Multi-resource scheduling and power simulation for cloud computing. Information Sciences, 397, 168.

    Article  Google Scholar 

  21. Hu, C., Li, H., Huo, Y., Xiang, T., & Liao, X. (2017). Secure and efficient data communication protocol for wireless body area networks. IEEE Transactions on Multi-Scale Computing Systems, 2(2), 94.

    Article  Google Scholar 

  22. Xia, Y., Liu, Y., Liu, J., & Zhu, Q. (2012). Modeling and performance evaluation of BPEL processes: A stochastic-petri-net-based approach. IEEE Transactions on Systems Man and Cybernetics Part A: Systems and Humans, 42(2), 503.

    Article  Google Scholar 

  23. Kumar, N., Rodrigues, J. J., & Chilamkurti, N. (2014). Bayesian coalition game as-a-service for content distribution in internet of vehicles. IEEE Internet of Things Journal, 1(6), 544.

    Article  Google Scholar 

  24. Uysal, M., Ghassemlooy, Z., Bekkali, A., Kadri, A., & Menouar, H. (2015). Visible light communication for vehicular networking: Performance study of a V2V system using a measured headlamp beam pattern model. IEEE Vehicular Technology Magazine, 10(4), 45.

    Article  Google Scholar 

  25. Dey, K. C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., & Martin, J. (2016). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network—Performance evaluation. Transportation Research Part C: Emerging Technologies, 68, 168.

    Article  Google Scholar 

  26. Lin, D., Kang, J., Squicciarini, A., Wu, Y., Gurung, S., & Tonguz, O. (2017). MoZo: A moving zone based routing protocol using pure V2V communication in VANETs. IEEE Transactions on Mobile Computing, 16(5), 1357.

    Article  Google Scholar 

  27. Sun, W., Ström, E. G., Brännström, F., Sou, K. C., & Sui, Y. (2016). Radio resource management for D2D-based V2V communication. IEEE Transactions on Vehicular Technology, 65(8), 6636.

    Article  Google Scholar 

  28. Hu, C., Cheng, X., Zhang, F., Wu, D., Liao, X., & Chen, D. (2013). OPFKA: Secure and efficient ordered-physiological-feature-based key agreement for wireless body area networks. In IEEE INFOCOM (pp. 2274–2282).

  29. Zhang, R., Xie, P., Wang, C., Liu, G., & Wan, S. (2019). Classifying transportation mode and speed from trajectory data via deep multi-scale learning. Computer Networks, 162, 106861.

    Article  Google Scholar 

  30. Xia, Y., Wan, N., Gang, D., Xin, L., & Sun, T. (2012). A non-Markovian stochastic petri net-based approach to performance evaluation of ontology-based service composition. Concurrency and Computation: Practice and Experience, 24(18), 2255.

    Article  Google Scholar 

  31. Gao, Z., Xuan, H. Z., Zhang, H., Wan, S., & Choo, K. K. R. (2019). Adaptive fusion and category-level dictionary learning model for multi-view human action recognition. IEEE Internet of Things Journal.

  32. Wang, S., Fan, C., Hsu, C. H., Sun, Q., & Yang, F. (2016). A vertical handoff method via self-selection decision tree for internet of vehicles. IEEE Systems Journal, 10(3), 1183.

    Article  Google Scholar 

  33. Cheng, J., Cheng, J., Zhou, M., Liu, F., Gao, S., & Liu, C. (2015). Routing in internet of vehicles: A review. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2339.

    Article  Google Scholar 

  34. Xing, K., Hu, C., Yu, J., Cheng, X., & Zhang, F. (2017). Mutual privacy preserving k-means clustering in social participatory sensing. IEEE Transactions on Industrial Informatics, 13(4), 2066–2076.

    Article  Google Scholar 

  35. Zheng, W., Wang, Y., Xia, Y., Wu, Q., Wu, L., Guo, K., et al. (2017). On dynamic performance estimation of fault-prone infrastructure-as-a-service clouds. International Journal of Distributed Sensor Networks, 13(7), 1550147717718514.

    Article  Google Scholar 

  36. Zhang, J., Zhou, Z., Li, S., Gan, L., Zhang, X., Qi, L., et al. (2018). Hybrid computation offloading for smart home automation in mobile cloud computing. Personal and Ubiquitous Computing, 22(1), 121.

    Article  Google Scholar 

  37. Liu, J., Wang, W., Li, D., Wan, S., & Liu, H. (2019). Role of gifts in decision making: An endowment effect incentive mechanism for offloading in the IoV. IEEE Internet of Things Journal, 6(4), 6933–6951.

    Article  Google Scholar 

  38. Hu, Q., Wu, C., Zhao, X., Chen, X., Ji, Y., & Yoshinaga, T. (2018). Vehicular multi-access edge computing with licensed sub-6 GHz, IEEE 802.11 p and mmWave. IEEE Access, 6, 1995.

    Article  Google Scholar 

  39. Wang, F., Xu, J., Wang, X., & Cui, S. (2018). Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Transactions on Wireless Communications, 17(3), 1784.

    Article  Google Scholar 

  40. Liu, J., Wan, J., Zeng, B., Wang, Q., Song, H., & Qiu, M. (2017). A scalable and quick-response software defined vehicular network assisted by mobile edge computing. IEEE Communications Magazine, 55(7), 94.

    Article  Google Scholar 

  41. Kumar, N., Zeadally, S., & Rodrigues, J. J. (2016). Vehicular delay-tolerant networks for smart grid data management using mobile edge computing. IEEE Communications Magazine, 54(10), 60.

    Article  Google Scholar 

  42. Wu, C., Zapevalova, E., Chen, Y., & Li, F. (2018). Time optimization of multiple knowledge transfers in the big data environment. Computers, Materials & Continua, 54(3), 269.

    Google Scholar 

  43. Xu, X., Xue, Y., Qi, L., Yuan, Y., Zhang, X., Umer, T., et al. (2019). An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles. Future Generation Computer Systems, 96, 89–100.

    Article  Google Scholar 

  44. Li, W. L., Wang, Y., Wang, Y., Xia, Y. N., Luo, X., Wu, Q., et al. (2017). An energy-aware and under-SLA-constraints VM consolidation strategy based on the optimal matching method. International Journal of Web Services Research, 14(4), 75.

    Article  Google Scholar 

  45. Ndikumana, A., Ullah, S., LeAnh, T., Tran, N. H., & Hong, C. S. (2017). Collaborative cache allocation and computation offloading in mobile edge computing. In 2017 19th Asia–Pacific network operations and management symposium (APNOMS) (pp. 366–369). IEEE.

  46. Chen, X., Jiao, L., Li, W., & Fu, X. (2016). Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795.

    Article  Google Scholar 

  47. Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., et al. (2016). Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access, 4, 5896.

    Article  Google Scholar 

  48. Mao, Y., Zhang, J., & Letaief, K. B. (2017). Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems. In 2017 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE.

Download references

Acknowledgements

This research is supported by the National Science Foundation of China under Grant Nos. 61702277, 61772283, 61672276 and 61872219. This work is also supported by The Startup Foundation for Introducing Talent of NUIST, the open project from the State Key Laboratory for Novel Software Technology, Nanjing University, under Grant No. KFKT2017B04, KFKT2019B17, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) fund, and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Wan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Gu, R., Dai, F. et al. Multi-objective computation offloading for Internet of Vehicles in cloud-edge computing. Wireless Netw 26, 1611–1629 (2020). https://doi.org/10.1007/s11276-019-02127-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02127-y

Keywords

Navigation