Skip to main content
Log in

Development of high-speed FSO transmission link for the implementation of 5G and Internet of Things

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) enables the inter-connectivity of different “things” using which wide range of items and devices can communicate with each other and their external environment. 5G technology offers enhanced quality of service with high-data transmission rates, which necessitates the implementation of IoT in 5G architecture. Free space optics (FSO) is considered as a promising technology that can offer high-speed information transmission links and therefore is an optimal choice for wireless networks to satisfy the full potential of 5G technology offering 100 Gbit/s or more speed. By implementing 5G features in IoT, the coverage area and performance of IoT will be enhanced using high-speed FSO links. This work proposes the development of high-speed long-reach FSO link for the implementation of 5G and IoT. We investigate a long-haul, single-channel polarization division multiplexed 16-level quadrature amplitude modulation (PDM-16-QAM) based FSO link at 160 Gbit/s incorporating digital signal processing with coherent detection at the receiver terminal. The results show that the proposed system demonstrates a good bit error rate performance under different weather conditions. The proposed system can be deployed for high-speed, long-haul, spectral efficient, robust information transmission links in future 5G wireless networks under dynamic weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh, D., Tripathi, G., Jara, A. J. (2014). A survey of internet-of-things: future vision, architecture, challenges and services. In: Proceedings of IEEE World Forum on Internet of Things 2014, at Seoul, pp. 287–292.

  2. Miraz, M. H., Ali, M., Excell, P. S., & Picking, R.: A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). In 2015 Internet Technologies and Applications (ITA), Wrexham, pp. 219–224.

  3. Condoluci, M., Araniti, G., Mahmoodi, T., & Dohler, M. (2016). Enabling the IoT machine age with 5G: machine-type multicast services for innovative real-time applications. IEEE Access,4, 5555–5569.

    Article  Google Scholar 

  4. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access,3, 1206–1232.

    Article  Google Scholar 

  5. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials,17(4), 2347–2376.

    Article  Google Scholar 

  6. Palattella, M. R., et al. (2016). Internet of Things in the 5G Era: Enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications,34(3), 510–527.

    Article  Google Scholar 

  7. Čolaković, Alem, & Hadžialić, Mesud. (2018). Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks,144, 17–39.

    Article  Google Scholar 

  8. Majumdar, A. K. (2019). Chapter 8—Free-space optical communications: role and integration with the Internet of Things. In A. K. Majumdar (Ed.), Optical wireless communications for Broadband Global Internet Connectivity (pp. 245–258). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  9. Singh, J., & Kumar, N. (2013). Performance analysis of different modulation format on free space optical communication system. Optik-International Journal of Light and Electron Optics,124(20), 4651–4654.

    Article  Google Scholar 

  10. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials,16(4), 2231–2258.

    Article  Google Scholar 

  11. Badar, N., Jha, R., & Towfeeq, I. (2018). Performance analysis of 80 (8 × 10) Gbps RZ-DPSK based WDM-FSO system under combined effects of various weather conditions and atmospheric turbulence induced fading employing Gamma-Gamma fading model. Optical and Quantum Electronics,50, 1–11.

    Article  Google Scholar 

  12. Jeyaseelan, J., Kumar, S., & Caroline, B. (2018). PolSK and ASK modulation techniques based BER analysis of WDM-FSO system for under turbulence conditions. Wireless Personal Communications,103(4), 3221–3237.

    Article  Google Scholar 

  13. Jeyaseelan, J., Kumar, S., & Caroline, B. (2018). Performance analysis of free space optical communication system employinh WDM-PolSK under turbulent weather conditions. Journal of Optoelectronics and Advanced Materials,20(9), 506–514.

    Google Scholar 

  14. Chaudhary, S., Amphawan, A., & Nisar, K. (2014). Realization of free space optics with OFDM under atmospheric turbulence. Optik,125(18), 5196–5198.

    Article  Google Scholar 

  15. Kaur, G., Srivastava, D., Singh, P., & Parasher, Y. (2019). Development of a novel hybrid PDM/OFDM technique for FSO system and its performance analysis. Optics & Laser Technology,109, 256–262.

    Article  Google Scholar 

  16. Chaudhary, S., & Amphawan, A. (2018). Solid core PCF-based mode selector for MDM-Ro-FSO transmission systems. Photonic Network Communications,36(2), 263–271.

    Article  Google Scholar 

  17. Chaudhary, S., & Amphawan, A. (2018). Selective excitation of LG 00, LG 01, and LG 02 modes by a solid core PCF based mode selector in MDM-Ro-FSO transmission systems. Laser Physics,28(7), 1–8.

    Article  Google Scholar 

  18. Amphawan, A., Chaudhary, S., & Chan, V. (2019). Optical millimeter wave mode division multiplexing of LG and G modes for OFDM Ro-FSO system. Optics Communications,431, 245–254.

    Article  Google Scholar 

  19. Sarangal, H., Singh, A., Malhotra, J., & Chaudhary, S. (2017). A cost effective 100Gbps hybrid MDM-OCDMA-FSO transmission system under atmospheric turbulences. Optical and Quantum Electronics,49, 184.

    Article  Google Scholar 

  20. Makovejs, S., Millar, D. S., Mikhailov, V., Gavioli, G., Killey, R. I., Savory, S. J., et al. (2010). Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km. IEEE Photonics Technology Letters,22(1), 36–38.

    Article  Google Scholar 

  21. Mori, Y., Zhang, C., Igarashi, K., Katoh, K., & Kikuchi, K. (2009). Unrepeated 200-km transmission of 40-Gbit/s 16- QAM signals using digital coherent receiver. Optics Express,17(3), 1435–1441.

    Article  Google Scholar 

  22. Charlet, G., Renaudier, J., Mardoyan, H., Tran, P., Pardo, O. B., Verluise, F., et al. (2009). Transmission of 16.4-Tbit/s capacity over 2550 km using PDM QPSK modulation format and coherent detection. Journal of Lightwave Technology,27(3), 153–157.

    Article  Google Scholar 

  23. Renaudier, J., Charlet, G., Bertran-Pardo, O., Mardoyan, H., Tran, P., Salsi, M., et al. (2009). Transmission of 100 Gb/s coherent PDM-QPSK over 16 x 100 km of standard fiber with allerbium amplifiers. Optics Express,17(7), 5112–5119.

    Article  Google Scholar 

  24. Winzer, P. J., Gnauck, A. H., Doerr, C. R., Magarini, M., & Buhl, L. L. (2010). Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM. Journal of Lightwave Technology,28(4), 547–556.

    Article  Google Scholar 

  25. Sano, A., Masuda, H., Kobayashi, T., Fujiwara, M., Horikoshi, K., Yoshida, E., et al. (2010). 69.1-Tb/s (432 × 171-Gb/s) C- and Extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection. In Proceedings of OFC, paper PDPB7, Sam Diego, USA.

  26. Jain, D., & Mehra, R. (2017). Performance of 120 Gbps single and dual polarized 16-QAM coherent FSO systems under various turbulence regimes. In 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), Gurgaon, pp. 89–94.

  27. Zhou, X., & Yu, J. (2009). Digital signal processing for coherent optical communication. In 18th Annual Wireless and Optical Communications Conference, Newark, NJ, pp. 1–5.

  28. Zhong, K., Zhou, X., Huo, J., Yu, C., Lu, C., & Lau, A. P. T. (2018). Digital signal processing for short-reach optical communications: A review of current technologies and future trends. Journal of Lightwave Technology,36(2), 377–400.

    Article  Google Scholar 

  29. Tsukamoto, S., Katoh, K., & Kikuchi, K. (2006). Unrepeated 20-Gbit/s QPSK transmission over standard single-mode fiber using homodyne detection and digital signal processing for dispersion compensation. In Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, Anaheim, CA.

  30. Raju, M., & Reddy, K. A. (2016). Evaluation of BER for AWGN, Rayleigh fading channels under M-QAM modulation scheme. In International conference on electrical, electronics, and optimization techniques (ICEEOT), Chennai, pp. 3081–3086.

  31. Sklar, B. (2001). Digital communications: Fundamentals and applications. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  32. Kolev, D. R., Wakamori, K., & Matsumoto, M. (2012). Transmission analysis of OFDM-based services over line-of-sight indoor infrared laser wireless links. Journal of Lightwave Technology,30, 3727–3735.

    Article  Google Scholar 

  33. Ciblat, P., & Vandendorpe, L. (2003). Blind carrier frequency offset estimation for noncircular constellation-based transmissions. IEEE Transactions on Signal Processing,51, 1378–1389.

    Article  MathSciNet  Google Scholar 

  34. Zhou, X., Zhong, K., Gao, Y., Lu, C., Lau, A. P. T., & Long, K. (2014). Modulation-format-independent blind phase search algorithm for coherent optical square M-QAM systems. Optics Express,22, 24044–24054.

    Article  Google Scholar 

  35. Karaki, J., Giacoumidis, E., Grot, D., Guillossou, T., Gosset, C., Le Bidan, R., et al. (2013). Dual-polarization multi-band OFDM versus single-carrier DPQPSK for 100 Gb/s long-haul WDM transmission over legacy infrastructure. Optics Express,21, 16982.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to express their sincere thanks to Prof. Dr. Truong Khang Nguyen, Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam for giving his value suggestion, comments and support to complete this work as effective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtab Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhasarathan, V., Singh, M. & Malhotra, J. Development of high-speed FSO transmission link for the implementation of 5G and Internet of Things. Wireless Netw 26, 2403–2412 (2020). https://doi.org/10.1007/s11276-019-02166-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02166-5

Keywords

Navigation