Skip to main content
Log in

On mixing reservoir targeted drug delivery Modeling-based Internet of Bio-NanoThings

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Nowadays, the Internet of Bio-NanoThings (IoBNT) is playing an important role to become the leading technique used in healthcare delivery systems. The IoBNT is considered a promising paradigm for efficient communication between nanodevices to deliver therapeutic drug molecules and thus achieve the target concentration to the diseased cell/tissue inside intra-body nanonetworks. However, ignoring the physical architecture of these nanodevices may effect on the delivered concentration when employing the IoBNT paradigm. Therefore, in this paper, we propose a spherical transmitter nanodevice, namely reservoir for controlling the drug molecules to be released and showing the effects of the geometry design of such nanodevice on the concentration arrived inside intra-body nanonetwork. Moreover, we present a pharmacokinetic system comprising of a mathematical model for studying the effects and variance in drug concentration, while taking into consideration the distance from the center of the nanotransmitter to the center of the nanoreceiver. The performance analysis of the proposed IoBNT system is numerically investigated. The performance is evaluated by employing the pharmacokinetic model in terms of bio-cyber interface forward and reverse links. The simulation results reveal that the proposed model is able to achieve a high concentration around the targeted cells and thus decrease side effects around healthy cells compared with the state-of-the-art. Additionally, the results illustrate that proposed reservoir is capable of controlling the emission of the therapeutic drug molecules and thus improving the delivery of the dose at target time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chude-Okonkwo, U. A., Malekian, R., & Maharaj, B. S. (2016). Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Transactions on Nanobioscience,15(3), 230–245.

    Article  Google Scholar 

  2. Fakruddin, M., Hossain, Z., & Afroz, H. (2012). Prospects and applications of nanobiotechnology: A medical perspective. Journal of Nanobiotechnology,10(1), 31.

    Article  Google Scholar 

  3. Chude-Okonkwo, U. A., Malekian, R., Maharaj, B. et al. Bio-inspired approach for eliminating redundant nanodevices in Internet of Bio-Nano Things, pp. 1–6.

  4. Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks,52(12), 2260–2279.

    Article  Google Scholar 

  5. Freitas, R. A. (2005). Current status of nanomedicine and medical nanorobotics. Journal of Computational and Theoretical Nanoscience,2(1), 1–25.

    Google Scholar 

  6. Silva, C. O., Pinho, J. O., Lopes, J. M., et al. (2019). Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics,11(1), 22.

    Article  Google Scholar 

  7. Griffith, L. G., & Naughton, G. (2002). Tissue engineering—Current challenges and expanding opportunities. Science,295(5557), 1009–1014.

    Article  Google Scholar 

  8. Singh, A., Bivalacqua, T. J., & Sopko, N. (2018). Urinary tissue engineering: Challenges and opportunities. Sexual Medicine Reviews,6(1), 35–44.

    Article  Google Scholar 

  9. Gandhi, A., Paul, A., Sen, S. O., et al. (2015). Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian Journal of Pharmaceutical Sciences,10(2), 99–107.

    Article  Google Scholar 

  10. Byrne, R., & Diamond, D. (2006). Chemo/bio-sensor networks. Nature Materials,5(6), 421.

    Article  Google Scholar 

  11. Kuscu, M., & Akan, O. B. Modeling and analysis of SiNW bioFET as molecular antenna for bio-cyber interfaces towards the Internet of Bio-Nanothings, pp. 669–674.

  12. Atakan, B., Akan, O. B., & Balasubramaniam, S. (2012). Body area nanonetworks with molecular communications in nanomedicine. IEEE Communications Magazine,50(1), 28–34.

    Article  Google Scholar 

  13. Nel, A. E., Lutz, M. D., Darrell, V., et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials,8(7), 543.

    Article  Google Scholar 

  14. Nakano, T., Moore, M., Okaie, Y. et al. Swarming biological nanomachines through molecular communication for targeted drug delivery, pp. 2317–2320.

  15. Nakano, T., Suda, T., Okaie, Y., et al. (2014). Molecular communication among biological nanomachines: A layered architecture and research issues. IEEE Transactions on Nanobioscience,13(3), 169–197.

    Article  Google Scholar 

  16. Yang, W.-W., & Pierstorff, E. (2012). Reservoir-based polymer drug delivery systems. Journal of Laboratory Automation,17(1), 50–58.

    Article  Google Scholar 

  17. Siepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release,161(2), 351–362.

    Article  MATH  Google Scholar 

  18. Chahibi, Y. (2017). Molecular communication for drug delivery systems: A survey. Nano Communication Networks,11, 90–102.

    Article  Google Scholar 

  19. Chahibi, Y., Akyildiz, I. F., Balasubramaniam, S., et al. (2015). Molecular communication modeling of antibody-mediated drug delivery systems. IEEE Transactions on Biomedical Engineering,62(7), 1683–1695.

    Article  Google Scholar 

  20. Akyildiz, I. F., Pierobon, M., & Balasubramaniam, S. (2019). An information theoretic framework to analyze molecular communication systems based on statistical mechanics. Proceedings of the IEEE,107(7), 1230–1255.

    Article  Google Scholar 

  21. Lanfranco, R., Mognetti, B. M., & Bruylants, G. (2019). Achieving selective targeting using engineered nanomaterials. In Thermodynamics and biophysics of biomedical nanosystems, Springer, pp. 147–182.

  22. Akyildiz, I. F., Pierobon, M., Balasubramaniam, S., et al. (2015). The internet of Bio-Nano Things. IEEE Communications Magazine,53(3), 32–40.

    Article  Google Scholar 

  23. Chude-Okonkwo, U. A., Malekian, R., & Maharaj, B. (2016). Biologically inspired bio-cyber interface architecture and model for Internet of bio-nanothings applications. IEEE Transactions on Communications,64(8), 3444–3455.

    Article  Google Scholar 

  24. AbdEl-atty, S. M., Bidar, R., & El-Rabaie, E. S. M. (2019). MolCom system with downlink/uplink biocyber interface for Internet of Bio-NanoThings. International Journal of Communication Systems,33, e4171.

    Article  Google Scholar 

  25. James, H. P., John, R., Alex, A., et al. (2014). Smart polymers for the controlled delivery of drugs—A concise overview. Acta Pharmaceutica Sinica B,4(2), 120–127.

    Article  Google Scholar 

  26. Torchilin, V. (2009). Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics,71(3), 431–444.

    Article  Google Scholar 

  27. Larson, N., & Ghandehari, H. (2012). Polymeric conjugates for drug delivery. Chemistry of Materials,24(5), 840–853.

    Article  Google Scholar 

  28. Dollard, M.-A., & Billard, P. (2003). Whole-cell bacterial sensors for the monitoring of phosphate bioavailability. Journal of Microbiological Methods,55(1), 221–229.

    Article  Google Scholar 

  29. Monson, E., Brasuel, M., Philbert, M., et al. (2003). PEBBLE nanosensors for in vitro bioanalysis. Biomedical Photonics Handbook,9, 1–14.

    Google Scholar 

  30. Dhillon, S., & Kostrzewski, A. (2006). Clinical pharmacokinetics. London: Pharmaceutical Press.

    Google Scholar 

  31. Miah, M. K., Shaik, I. H., Feturi, F. G. et al. (2019). Clinical pharmacokinetics. In Clinical pharmacy education, practice and research, Elsevier, pp. 409–424.

  32. Kuscu, M., Dinc, E., Bilgin, B. A. et al. (2019). Transmitter and receiver architectures for molecular communications: A survey on physical design with modulation, coding, and detection techniques. In Proceedings of the IEEE.

  33. Klein, B. G. (2019). Cunningham’s textbook of veterinary physiology: Elsevier Health Sciences. Amsterdam: Elsevier.

    Google Scholar 

  34. Bourne, D. A. (2018). Mathematical modeling of pharmacokinetic data. Abingdon: Routledge.

    Book  Google Scholar 

  35. Freiberg, S., & Zhu, X. (2004). Polymer microspheres for controlled drug release. International Journal of Pharmaceutics,282(1–2), 1–18.

    Article  Google Scholar 

  36. Hossen, S., Hossain, M. K., Basher, M., et al. (2018). Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research,15, 1–18.

    Article  Google Scholar 

  37. Cascone, S., Lamberti, G., Titomanlio, G., et al. (2013). Pharmacokinetics of remifentanil: A three-compartmental modeling approach. Translational Medicine@ UniSa,7, 18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aya El-Fatyany.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Fatyany, A., Wang, H. & Abd El-atty, S.M. On mixing reservoir targeted drug delivery Modeling-based Internet of Bio-NanoThings. Wireless Netw 26, 3701–3713 (2020). https://doi.org/10.1007/s11276-020-02294-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02294-3

Keywords

Navigation