Skip to main content

Advertisement

Log in

Coverage aware face topology structure for wireless sensor network applications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Providing effective sensing coverage of an observation area with reduced set of working nodes for maximum duration of time is an important concern for the development of durable and energy efficient WSN applications. A well-organized network structure can greatly promote such requirements. Motivated by the use of computational geometry in network design, we propose a coverage-aware and efficient planar face topology structure (CAFT) for WSN in this paper. Also, a distributed target tracking algorithm is proposed to run on the proposed face structure. Most of the existing works utilize the face based WSNs which are built by generating planarized graphs using Gabriel graph or Relative neighborhood graph in which all the deployed nodes become a part of the created toplogy. In contrast to this, our proposed distributed topology construction method selects and organizes a subset of nodes into faces, ensures coverage and connectivity while retaining the remaining nodes in sleep mode which can reduce redundant communication that may result in extra energy consumption and cost. The sleep nodes can promote durable service time for the WSN as such nodes can act as replacement nodes in case of node faults and failures, reducing coverage hole formation in the WSN, which is crucial in critical tracking applications. The simulation results and comparison with existing techniques prove that the proposed design is effective in reducing the energy consumption and thereby improves the WSN lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ramson, S. R. J., & Moni, D. J. (2017). Applications of wireless sensor networks—A survey. In 2017 international conference on innovations in electrical, electronics, instrumentation and media technology (ICEEIMT) (pp. 325–329).

  2. Wu, D., Arkhipov, D. I., Kim, M., Talcott, C. L., Regan, A. C., Mccann, J. A., et al. (2016). ADDSEN: Adaptive data processing and dissemination for drone swarms in urban sensing. IEEE Transactions on Computers, 66, 1–1.

    Article  MathSciNet  MATH  Google Scholar 

  3. Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. Journal of Parallel and Distributed Computing, 73(8), 1049–1065.

    Article  MATH  Google Scholar 

  4. Zhao, Y., Li, Y., Wu, D., & Ge, N. (2017). Overlapping coalition formation game for resource allocation in network coding aided D2D communications. IEEE Transactions on Mobile Computing, 16(12), 3459–3472.

    Article  Google Scholar 

  5. Ali, A., Ming, Y., Chakraborty, S., & Iram, S. (2017). A comprehensive survey on real-time applications of WSN. Future Internet, 9(4), 77.

    Article  Google Scholar 

  6. Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, 12–28.

    Article  Google Scholar 

  7. Dahane, A., & Berrached, N.-E. (2019). Wireless sensor networks: A survey. Mobile, Wireless and Sensor Networks, 1–24.

  8. Mamun, Q. (2012). A qualitative comparison of different logical topologies for wireless sensor networks. Sensors, 12(11), 14887–14913.

    Article  Google Scholar 

  9. Shen, Y., Kim, K. T., Park, J. C., & Youn, H. Y. (2013) Object tracking based on the prediction of trajectory in wireless sensor networks. In 2013 IEEE 10th international conference on high performance computing and communications 2013 IEEE international conference on embedded and ubiquitous computing (pp. 2317–2324).

  10. Lu, H., Li, J., & Guizani, M. (2014). Secure and efficient data transmission for cluster-based wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25, 750–761.

    Article  Google Scholar 

  11. Osamy, W., Khedr, A. M., Aziz, A., & El-Sawy, A. A. (2018). Cluster-tree routing based entropy scheme for data gathering in wireless sensor networks. IEEE Access, 6, 77372–77387.

    Article  Google Scholar 

  12. Sun, L., Luo, Y., Yu, Y., & Ding, X. (2014). Voronoi diagram generation algorithm based on Delaunay triangulation. Journal of Software, 9(3), 777–784.

    Article  Google Scholar 

  13. Ruhrup, S., & Stojmenovic, I. (2013). Optimizing communication overhead while reducing path length in beaconless georouting with guaranteed delivery for wireless sensor networks. IEEE Transactions on Computers, 62(12), 2440–2453.

    Article  MathSciNet  MATH  Google Scholar 

  14. Bc, P. R. S., & Gc, B. P. (2018). An efficient approach to preserve the network connectivity of WSN by cautiously removing the crossing edges using COLS. Journal of Computer Science and Systems Biology, 11(3).

  15. Tsai, H.-W., Chu, C.-P., & Chen, T.-S. (2007). Mobile object tracking in wireless sensor networks. Computer Communications, 30(8), 1811–1825.

    Article  Google Scholar 

  16. Akl, A., Gayraud, T., & Berthou, P. (2011). A metric for evaluating density level of wireless sensor networks. In IFIP wireless days (WD) (pp. 1–3).

  17. Cheng, Y. P., Tang, Y. J., & Tsai, M. J. (2014). LF-GFG: location-free greedy-face-greedy routing with guaranteed delivery and lightweight maintenance cost in a wireless sensor network with changing topology. IEEE Transactions on Wireless Communications, 13(12), 70257036.

    Google Scholar 

  18. Safavi, S. M., Meybodi, M. R., & Esnaashari, M. (2014). Learning automata based face-aware mobicast. Wireless Personal Communications, 77(3), 1923–1933.

    Article  Google Scholar 

  19. Bhuiyan, M. Z. A., Wang, G., & Vasilakos, A. V. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.

    Article  MathSciNet  MATH  Google Scholar 

  20. Souza, E. L., Pazzi, R. W., & Nakamura, E. F. (2014). A distributed tracking algorithm for target interception in face-structured sensor networks. In 39th annual IEEE conference on local computer networks.

  21. Hsu, J.-M., Chen, C.-C., & Li, C.-C. (2012). POOT: An efficient object tracking strategy based on short-term optimistic predictions for facestructured sensor networks. Computers & Mathematics with Applications, 63(2), 391–406.

    Article  MATH  Google Scholar 

  22. Banerjee, I., Chanak, P., Rahaman, H., & Samanta, T. (2014). Effective fault detection and routing scheme for wireless sensor networks. Computers & Electrical Engineering, 40(2), 291–306.

    Article  Google Scholar 

  23. Płaczek, B. (2014). Communication-aware algorithms for target tracking in wireless sensor networks. In Computer networks communications in computer and information science (pp. 69–78).

  24. Khedr, A. M., & Osamy, W. (2010). Nonlinear trajectory discovery of a moving target by a wireless sensor network. Journal of Computing and Informatics, 29(5), 1001–1016.

    Google Scholar 

  25. Khedr, A. M., & Osamy, W. (2007). Tracking mobile targets using random sensor networks. The Arabian Journal for Science and Engineering, 32(2B), 301–315.

    MATH  Google Scholar 

  26. Bhuiyan, M. Z. A., Wang, G.-J., Zhang, L., & Peng, Y. (2010). Prediction-based energy-efficient target tracking protocol in wireless sensor networks. Journal of Central South University of Technology, 17(2), 340–348.

    Article  Google Scholar 

  27. Bhuiyan, M. Z. A., Wang, G., & Wu, J. (2009). Target tracking with monitor and backup sensors in wireless sensor networks. In Proceedings of 18th international conference on computer communications and networks (pp. 1–6).

  28. Wang, G. J., Bhuiyan, M. Z. A., Cao, J. N., & Wu, J. (2014). Detecting movements of a target using face tracking in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 939–949.

    Article  Google Scholar 

  29. Razzaq, A. (2018). An energy efficient and fault tolerant distributed object tracking system using new face-based wireless sensor networks. Master’s thesis, Department of Computer Science, University of Sharjah.

  30. Razzaq, A., Khedr, A. M., & Aghbari, Z. A. (2018). A redundancy-aware face structure for wireless sensor networks. In: 2018 8th international conference on computer science and information technology (CSIT).

  31. Khedr, A. M., & Osamy, W. (2011). Effective target tracking mechanism in a self-organizing wireless sensor network. Journal of Parallel and Distributed Computing, 71(10), 1318–1326.

    Article  Google Scholar 

  32. Khedr, A. M. (2008). A new mechanism for tracking a mobile target using grid sensor networks. Computing and Informatics, 28, 1001–1021.

    Google Scholar 

  33. Sarkar, R., & Gao, J. (2013). Differential forms for target tracking and aggregate queries in distributed networks. IEEE/ACM Transactions on Networking, 21(4), 11591172.

    Article  Google Scholar 

  34. Zhu, H., Li, M., Zhu, Y., & Lionel, M. N. (2009). HERO: Online realtime vehicle tracking. IEEE Transactions on Parallel and Distributed Systems, 20(5), 740–752.

    Article  Google Scholar 

  35. Chen, P., Zhong, Z., & He, T. (2011). Bubble trace: Mobile target tracking under insufficient anchor coverage. In Proceedings of IEEE ICDCS (pp. 770–779).

  36. Misra, S., & Singh, S. (2012). Localized policy-based target tracking using wireless sensor networks. ACM Transactions on Sensor Networks, 8(3), 1–30.

    Article  Google Scholar 

  37. Wang, X., Fu, M., & Zhang, H. (2012). Target tracking in wireless sensor networks based on the combination of KF and MLE using distance measurements. IEEE Transactions on Mobile Computing, 11(4), 567–576.

    Article  Google Scholar 

  38. Demigha, O., Hidouci, W., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network: A review. IEEE Communications Surveys & Tutorials, 15(3), 1210–1222.

    Article  Google Scholar 

  39. Chen, T.-S., Chen, J.-J., & Wu, C.-H. (2016). Distributed object tracking using moving trajectories in wireless sensor networks. Wireless Networks, 22(7), 2415–2437.

    Article  Google Scholar 

  40. Abbasi, A. A., Younis, M. F., & Baroudi, U. A. (2013). Recovering from a node failure in wireless sensor-actor networks with minimal topology changes. IEEE Transactions on Vehicular Technology, 62(1), 256–271.

    Article  Google Scholar 

  41. Chouikhi, S., Korbi, I. E., Ghamri-Doudane, Y., & Saidane, L. A. (2014). Fault tolerant multi-channel allocation scheme for wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 2438–2443).

  42. Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.

    Article  Google Scholar 

  43. Hwang, R.-H., Wang, C.-C., & Wang, W.-B. (2017). A distributed scheduling algorithm for ieee 802.15.4e wireless sensor networks. Computer Standards & Interfaces, 52, 63–70.

    Article  Google Scholar 

  44. Wang, B. (2011). Coverage problems in sensor networks. ACM Computing Surveys, 43(4), 1–53.

    Article  Google Scholar 

  45. Beghdad, R., & Lamraoui, A. (2016). Boundary and holes recognition in wireless sensor networks. Journal of Innovation in Digital Ecosystems, 3(1), 1–14.

    Article  Google Scholar 

  46. Khedr, A. M., & Osamy, W. (2011). Minimum perimeter coverage of query regions in a heterogeneous wireless sensor network. Information Sciences, 181, 3130–3142.

    Article  Google Scholar 

  47. Xu, Y., & Zeng, Z. (2015). A low redundancy and high coverage node scheduling algorithm for wireless sensor networks. In Communications in computer and information science advances in wireless sensor networks (pp. 42–51).

  48. Cheng, W., Li, Y., Jiang, Y., & Yin, X. (2016). Regular deployment of wireless sensors to achieve connectivity and information coverage. Sensors, 16(8), 1270.

    Article  Google Scholar 

  49. Qiu, C., & Shen, H. (2014). A delaunay-based coordinate-free mechanism for full coverage in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 828–839.

    Article  Google Scholar 

  50. Hajihoseini Gazestani, A., Shahbazian, R., & Ghorashi, S. A. (2017). Decentralized consensus based target localization in wireless sensor networks. Wireless Personal Communications, 97(3), 3587–3599.

    Article  Google Scholar 

  51. Hajihoseini, A., & Ghorashi, S. A. (2016). Distributed target localization in wireless sensor networks using diffusion adaptation. Indonesian Journal of Electrical Engineering and Computer Science, 3(3), 512.

    Article  Google Scholar 

  52. Hormann, K., & Agathos, A. (2001). The point in polygon problem for arbitrary polygons. Computational Geometry, 20(3), 131–144.

    Article  MathSciNet  MATH  Google Scholar 

  53. Instruments, T. Cc2420. http://www.ti.com/lit/ds/symlink/cc2420.pdf.

  54. Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communications, 85(3), 1689–1699.

    Article  Google Scholar 

  55. Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2005). Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks. In First international conference on wireless internet (WICON05).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P V Pravija Raj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khedr, A.M., Al Aghbari, Z. & Pravija Raj, P.V. Coverage aware face topology structure for wireless sensor network applications. Wireless Netw 26, 4557–4577 (2020). https://doi.org/10.1007/s11276-020-02347-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02347-7

Keywords

Navigation