Skip to main content

Advertisement

Log in

An optimization based approach to enhance the throughput and energy efficiency for cognitive unmanned aerial vehicle networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Unmanned aerial vehicle (UAV) is a promising technology to serve as a mission-critical communication, where human operation or intervention is risky, dangerous, impossible or critical in terms of time and cost. The performance of the UAV depends highly on the operating radio environment e.g. multipath shadowing and fading, and spectrum availability. Therefore, a cognitive radio-based UAV is considered to utilize the radio spectrum opportunistically, and minimize the network congestion during a disaster on preallocated channel or degradation of the quality of service. In this paper, we have presented an analytical model for cognitive UAV downlink communication between the UAV and the ground nodes. This model aims to maximize the throughput and improve the energy efficiency by minimizing the power consumption for the UAVs. Specifically, we developed two optimization approaches to address the energy efficiency with and without the throughput of the user as constraints. Simulation results for the energy efficiency without constraints show that \(11.16\%\) and \(6.43\%\) performance improvement can be achieved for throughput, and energy efficiency respectively in comparison to unoptimized one. Similar behavior has observed with the energy efficiency with constraints and a significant improvement has achieved in throughput performance e.g. \(64.02\%\) with the cost of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zeng, Y., Wu, Q., & Zhang, R. Accessing from the sky: A tutorial on UAV communications for 5G and beyond. arXiv preprint arXiv:1903.05289.

  2. Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42.

    Article  Google Scholar 

  3. Saleem, Y., Rehmani, M. H., & Zeadally, S. (2015). Integration of cognitive radio technology with unmanned aerial vehicles: Issues, opportunities, and future research challenges. Journal of Network and Computer Applications, 50, 15–31.

    Article  Google Scholar 

  4. Zhang, L., Zhao, H., Hou, S., Zhao, Z., Xu, H., Wu, X., et al. (2019). A survey on 5G millimeter wave communications for UAV-assisted wireless networks. IEEE Access, 7, 117460–117504.

    Article  Google Scholar 

  5. Ullah, Z., Al-Turjman, F., & Mostarda, L. (2020). Cognition in UAV-aided 5G and beyond communications: A survey. IEEE Transactions on Cognitive Communications and Networking, 6(3), 872–891. https://doi.org/10.1109/TCCN.2020.2968311.

    Article  Google Scholar 

  6. Shamsoshoara, A., Khaledi, M., Afghah, F., Razi, A., Ashdown, J., & Turck, K. (2019). A solution for dynamic spectrum management in mission-critical UAV networks. In 2019 16th annual IEEE international conference on sensing, communication, and networking (SECON) (pp. 1–6). IEEE.

  7. Mowla, N. I., Tran, N. H., Doh, I., & Chae, K. (2019). Federated learning-based cognitive detection of jamming attack in flying ad-hoc network. IEEE Access, 8, 4338–4350.

    Article  Google Scholar 

  8. Choi, H., Geeves, M., Alsalam, B., & Gonzalez, F. (2016). Open source computer-vision based guidance system for UAVs on-board decision making. In: 2016 IEEE aerospace conference (pp. 1–5). IEEE.

  9. Huang, Y., Xu, J., Qiu, L., & Zhang, R. (2018). Cognitive UAV communication via joint trajectory and power control. In 2018 IEEE 19th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–5). IEEE.

  10. Liu, X., Guan, M., Zhang, X., & Ding, H. (2018). Spectrum sensing optimization in an uav-based cognitive radio. IEEE Access, 6, 44002–44009.

    Article  Google Scholar 

  11. Sboui, L., Ghazzai, H., Rezki, Z., & Alouini, M.-S. (2017). Energy-efficient power allocation for UAV cognitive radio systems. In 2017 IEEE 86th vehicular technology conference (VTC-fall) (pp. 1–5). IEEE.

  12. Ghazzai, H., Ghorbel, M. B., Kadri, A., Hossain, M. J., & Menouar, H. (2017). Energy-efficient management of unmanned aerial vehicles for underlay cognitive radio systems. IEEE Transactions on Green Communications and Networking, 1(4), 434–443.

    Article  Google Scholar 

  13. Liang, X., Xu, W., Gao, H., Pan, M., Lin, J., Deng, Q., & Zhang, P. (2020). Throughput optimization for cognitive uav networks: A three-dimensional-location-aware approach. IEEE Wireless Communications Letters, 9(7), 948–952. https://doi.org/10.1109/LWC.2020.2974946.

    Article  Google Scholar 

  14. Pan, Y., Da, X., Hu, H., Zhu, Z., Xu, R., & Ni, L. (2019). Energy-efficiency optimization of uav-based cognitive radio system. IEEE Access, 7, 155381–155391.

    Article  Google Scholar 

  15. Hu, H., Huang, Y., Da, X., Zhang, H., Ni, L., & Pan, Y. (2020). Optimization of energy management for UAV-enabled cognitive radio. IEEE Wireless Communications Letters, 9(9), 1505–1508. https://doi.org/10.1109/LWC.2020.2995226.

    Article  Google Scholar 

  16. Mei, W., & Zhang, R. UAV-sensing-assisted cellular interference coordination: A cognitive radio approach. arXiv preprint arXiv:2001.01253.

  17. Khuwaja, A. A., Chen, Y., Zhao, N., Alouini, M.-S., & Dobbins, P. (2018). A survey of channel modeling for uav communications. IEEE Communications Surveys & Tutorials, 20(4), 2804–2821.

    Article  Google Scholar 

  18. Zhou, X., Durrani, S., Guo, J., & Yanikomeroglu, H. (2018). Underlay drone cell for temporary events: Impact of drone height and aerial channel environments. IEEE Internet of Things Journal, 6(2), 1704–1718.

    Article  Google Scholar 

  19. Azari, M. M., Rosas, F., & Pollin, S. (2019). Cellular connectivity for uavs: Network modeling, performance analysis, and design guidelines. IEEE Transactions on Wireless Communications, 18(7), 3366–3381.

    Article  Google Scholar 

  20. Khuwaja, A. A., Chen, Y., Zhao, N., Alouini, M., & Dobbins, P. (2018). A survey of channel modeling for uav communications. IEEE Communications Surveys Tutorials, 20(4), 2804–2821.

    Article  Google Scholar 

  21. Wang, H., Chen, J., Ding, G., & Wang, S. (2018). D2d communications underlaying uav-assisted access networks. IEEE Access, 6, 46244–46255.

    Article  Google Scholar 

  22. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs. IEEE Transactions on Wireless Communications, 15(6), 3949–3963.

    Article  Google Scholar 

  23. Motlagh, N. H., Bagaa, M., & Taleb, T. (2017). Uav-based iot platform: A crowd surveillance use case. IEEE Communications Magazine, 55(2), 128–134.

    Article  Google Scholar 

  24. Lagkas, T., Argyriou, V., Bibi, S., & Sarigiannidis, P. (2018). Uav iot framework views and challenges: towards protecting drones as “things”. Sensors, 18(11), 4015.

    Article  Google Scholar 

  25. Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., et al. (2019). Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572–48634.

    Article  Google Scholar 

  26. Rahul, A. R. & Akbar, M. S. (2019). Performance analysis of cognitive unmanned aerial vehicle.

  27. Mei, W., & Zhang, R. (2019). Cooperative downlink interference transmission and cancellation for cellular-connected UAV: A divide-and-conquer approach. IEEE Transactions on Communications, 68, 1297–1311.

    Article  Google Scholar 

  28. Geraci, G., Garcia-Rodriguez, A., Giordano, L. G., López-Pérez, D., & Björnson, E. (2018). Understanding uav cellular communications: From existing networks to massive mimo. IEEE Access, 6, 67853–67865.

    Article  Google Scholar 

  29. Sabuj, S. R., & Hamamura, M. (2018). Two-slope path-loss design of energy harvesting in random cognitive radio networks. Computer Networks, 142, 128–141.

    Article  Google Scholar 

  30. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2015). Drone small cells in the clouds: Design, deployment and performance analysis. In IEEE global communications conference (GLOBECOM) (pp. 1–6).

  31. Shen, F., Ding, G., Wang, Z., & Wu, Q. (2019). Uav-based 3d spectrum sensing in spectrum-heterogeneous networks. IEEE Transactions on Vehicular Technology, 68(6), 5711–5722.

    Article  Google Scholar 

  32. Le, T. N., Thi, L. A. N., Nghiem, T. K., Nguyen, H. V., Truong, D. K., et al. (2017). Complementary authenticator design for ground control station to identify unmanned aerial vehicles based on channel-tap power. In: 2017 international conference on system science and engineering (ICSSE) (pp. 471–475). IEEE.

  33. Chatzigeorgiou, I. (2013). Bounds on the lambert function and their application to the outage analysis of user cooperation. IEEE Communications Letters, 17(8), 1505–1508.

    Article  Google Scholar 

  34. Miettinen, K. (1999). Nonlinear multiobjective optimization. Berlin: Springer.

    MATH  Google Scholar 

  35. Mili, M. R., Musavian, L., Hamdi, K. A., & Marvasti, F. (2016). How to increase energy efficiency in cognitive radio networks. IEEE Transactions on Communications, 64(5), 1829–1843.

    Article  Google Scholar 

  36. Al-Hourani, A., Kandeepan, S., & Jamalipour, A. (2014). Modeling air-to-ground path loss for low altitude platforms in urban environments. In: IEEE global communications conference (pp. 2898–2904).

  37. Khan, M., Rahman, M. T., & Sabuj, S. R. (2018). A transmit antenna selection technique in random cognitive radio network. In TENCON 2018—2018 IEEE region 10 conference (pp. 0264–0267).

  38. Sabuj, S. R., & Hamamura, M. (2017). Outage and energy-efficiency analysis of cognitive radio networks: A stochastic approach to transmit antenna selection. Pervasive and Mobile Computing, 42, 444–469.

    Article  Google Scholar 

  39. Cordeiro, C., Challapali, K. (2007). C-MAC: A cognitive MAC protocol for multi-channel wireless networks. In: 2007 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (pp. 147–157).

  40. Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Akbar Hossain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Proof of optimal power transmission without constraint when \(\varOmega =0\)

Now deriving \(EE_D\) in Eq. (11) with respect to \(P_s\) we get,

$$\begin{aligned}&\frac{dEE_{D}}{dP_s} = 0 \nonumber \\&\quad \Rightarrow \frac{p_r (\varOmega =0) t_d (p_f - 1) \log (1+\frac{P_{s}g_{ss}^{2}}{\sigma ^{2}})}{\log (2) (t_s + t_d) (P_{ssp}+P_{cir}+P_{s})^2} \nonumber \\&\qquad - \frac{p_r (\varOmega =0) t_d (p_f - 1) g_{ss}^{2}}{\log (2) (t_s + t_d) \sigma ^{2}(1+\frac{P_{s}g_{ss}^{2}}{\sigma ^{2}})(P_{ssp}+P_{cir}+P_{s})} = 0 \nonumber \\&\quad \Rightarrow \frac{\log (1+\frac{P_{s}g_{ss}^{2}}{\sigma ^{2}})}{P_{ssp}+P_{cir}+P_{s}} = \frac{g_{ss}^{2}}{\sigma ^{2}(1+\frac{P_{s}g_{ss}^{2}}{\sigma ^{2}})} \nonumber \\&\quad \Rightarrow \log \left( \frac{P_s g_{ss}^2+\sigma ^{2}}{\sigma ^{2}} \right) \nonumber \\&\quad = \frac{P_{ssp} g_{ss}^2+P_{cir} g_{ss}^2 + P_s g_{ss}^2}{P_s g_{ss}^2 + \sigma ^{2}} \nonumber \\&\quad \Rightarrow \log \left( \frac{P_s g_{ss}^2+\sigma ^{2}}{\sigma ^{2}} \right) -1\nonumber \\&\quad = \frac{P_{ssp} g_{ss}^2+P_{cir} g_{ss}^2 + P_s g_{ss}^2}{P_s g_{ss}^2 + \sigma ^{2}}-1 \nonumber \\&\quad \Rightarrow \log \left( \frac{P_s g_{ss}^2+\sigma ^{2}}{\sigma ^{2}} \right) + \ln {e^{-1}}\nonumber \\&\quad =\frac{P_{ssp} g_{ss}^2+P_{cir}g_{ss}^2-\sigma ^{2}}{P_s g_{ss}^2+\sigma ^2} \nonumber \\&\quad \Rightarrow \log \left( \left( \frac{P_s g_{ss}^2+\sigma ^{2}}{\sigma ^{2}} \right) \exp (-1) \right) \nonumber \\&\quad =\frac{P_{ssp} g_{ss}^2 + P_{cir}g_{ss}^2-\sigma ^{2}}{P_s g_{ss}^2+\sigma ^2} \nonumber \\&\quad \Rightarrow \left( \frac{P_s g_{ss}^2+\sigma ^{2}}{\sigma ^{2}} \right) \exp (-1) \nonumber \\&\quad = \exp \left( \frac{P_{ssp} g_{ss}^2+P_{cir}g_{ss}^2-\sigma ^{2}}{P_s g_{ss}^2+\sigma ^2} \right) \nonumber \\&\quad \Rightarrow \frac{\exp (-1)(P_{ssp} g_{ss}^2+P_{cir}g_{ss}^2-\sigma ^{2})}{\sigma ^{2}} \nonumber \\&\quad = \left( \frac{P_{ssp}g_{ss}^2+P_{cir}g_{ss}^2-\sigma ^{2}}{P_s g_{ss}^2+\sigma ^2} \right) \nonumber \\&\qquad \exp \left( \frac{P_{ssp} g_{ss}^2 + P_{cir}g_{ss}^2-\sigma ^{2}}{P_s g_{ss}^2+\sigma ^2} \right) \end{aligned}$$
(6.31)

Using the Lambert method, we rewrite in Eq. (6.31)

$$\begin{aligned}&W\left( \frac{\exp (-1)(P_{ssp}g_{ss}^2 + P_{cir} g_{ss}^2 - \sigma ^{2})}{\sigma ^{2}} \right) \nonumber \\&\quad = \frac{P_{ssp} g_{ss}^2 + P_{cir}g_{ss}^2 - \sigma ^{2}}{P_s g_{ss}^2 + \sigma ^2} \nonumber \\&\Rightarrow P_s g_{ss}^2 + \sigma ^{2} = \frac{P_{ssp} g_{ss}^2+P_{cir}g_{ss}^2-\sigma ^{2}}{W\left( \frac{\exp (-1)(P_{ssp} g_{ss}^2 + P_{cir} g_{ss}^2-\sigma ^{2})}{\sigma ^{2}} \right) } \nonumber \\&\therefore P_s^1 =\frac{P_{ssp} g_{ss}^2 + P_{cir} g_{ss}^2 - \sigma ^{2}}{W\left( 0,\frac{\exp (-1)(P_{ssp} g_{ss}^2 + P_{cir}g_{ss}^2 - \sigma ^{2})}{\sigma ^{2}} \right) g_{ss}^2} - \frac{\sigma ^{2}}{g_{ss}^2} \end{aligned}$$
(6.32)

1.2 Proof of optimal power transmission without constraint when \(\varOmega =1\)

Here deriving \(EE_I\) in Eq. (12) with respect to \(P_s\) we get,

$$\begin{aligned}&\frac{dEE_{I}}{dP_s} = 0 \nonumber \\&\quad \Rightarrow \log \left( 1+\frac{P_s g_{ss}^2}{\sigma ^{2}(1+\gamma _{p} g_{s}p^2)} \right) \nonumber \\&\quad =\frac{P_{ssp} g_{ss}^2+P_{cir} g_{ss}^2+P_s g_{ss}^2}{ P_s g_{ss}^2+(1+\gamma _{p} g_{ps}^2)\sigma ^2 } \nonumber \\&\quad \Rightarrow \log \left( 1+\frac{P_s g_{ss}^2}{\sigma ^{2}(1+\gamma _{p} g_{ps}^2)}\right) + \ln {e^{-1}} \nonumber \\&\quad = \frac{P_{ssp} g_{ss}^2+P_{cir} g_{ss}^2 - (1+\gamma _{p} g_{ps}^2)\sigma ^2}{P_s g_{ss}^2+(1+\gamma _{p} g_{ps}^2)\sigma ^2 } \nonumber \\&\quad \Rightarrow \left( \frac{P_{ssp} g_{ss}^2 + P_{cir} g_{ss}^2-(1+\gamma _{p} g_{ps}^2)\sigma ^2}{\sigma ^{2}(1+\gamma _{p} g_{ps}^2)}\right) \,\exp (-1) \nonumber \\&\quad =\left( \frac{P_{ssp} g_{ss}^2 + P_{cir} g_{ss}^2 - (1+\gamma _{p} g_{ps}^2)\sigma ^2}{ P_s g_{ss}^2 + (1+\gamma _{p} g_{ps}^2)\sigma ^2 }\right) \nonumber \\&\qquad \exp \left( \frac{P_{ssp} g_{ss}^2 + P_{cir} g_{ss}^2-(1+\gamma _{p} g_{ps}^2) \sigma ^2}{ P_s g_{ss}^2+(1+\gamma _{p} g_{ps}^2)\sigma ^2 }\right) \end{aligned}$$
(6.33)

Using the Lambert method, we rewrite in Eq. (6.33) as follows

$$\begin{aligned}&W\left( \left( \frac{P_{ssp}g_{ss}^2+P_{cir}g_{ss}^2-(1+\gamma _{p} g_{ps}^2)\sigma ^2}{\sigma ^{2}(1+\gamma _{p} g_{ps}^2)}\right) \,e^{-1}\right) \nonumber \\&\quad = \left( \frac{P_{ssp} g_{ss}^2+P_{cir} g_{ss}^2-(1+\gamma _{p} g_{ps}^2)\sigma ^2}{ P_s g_{ss}^2+(1+\gamma _{p} g_{ps}^2)\sigma ^2 }\right) \nonumber \\&\quad \Rightarrow \, \frac{1}{W\left( \left( \frac{P_{ssp} g_{ss}^2 + P_{cir} g_{ss}^2-(1+\gamma _{p} g_{ps}^2)\sigma ^2}{\sigma ^{2}(1+\gamma _{p} g_{ps}^2)}\right) \,e^{-1}\right) } \nonumber \\&\quad = \frac{P_{s} g_{ss}^2+(1+\gamma _{p} g_{ps}^2)\sigma ^2}{P_{ssp} g_{ss}^2+ P_{cir} g_{ss}^2-(1+\gamma _{p} g_{ps}^2)\sigma ^2 } \nonumber \\&\quad \Rightarrow \, \frac{P_{ssp} g_{ss}^2 + P_{cir} g_{ss}^2 - (1+\gamma _{p} g_{ps}^2)\sigma ^2}{ W\left( \left( \frac{P_{ssp} g_{ss}^2 + P_{cir} g_{ss}^2-(1+\gamma _{p} g_{ps}^2)\sigma ^2}{\sigma ^{2} (1+\gamma _{p} g_{ps}^2)}\right) \,e^{-1}\right) }\nonumber \\&\quad = P_{s} g_{ss}^2+(1+\gamma _{p} g_{ps}^2)\sigma ^2 \nonumber \\&\quad \Rightarrow P_{s}^{2}= \frac{\left( P_{ssp} g_{ss}^2 + P_{cir} g_{ss}^{2}-\left( 1+ \gamma _{p} g_{ps}^{2} \right) \sigma ^{2} \right) }{W\left( 0,\left( \frac{P_{ssp} g_{ss}^2+P_{cir} g_{ss}^{2}-\left( 1+\gamma _{p} g_{ps}^{2} \right) \sigma ^{2}}{\sigma ^{2}\left( 1+ \gamma _{p} g_{ss}^{2} \right) } \right) \exp (-1) \right) g_{ss}^{2}} \nonumber \\&\quad - \frac{\left( 1+\gamma _{p} g_{ps}^{2} \right) \sigma ^{2}}{g_{ss}^{2}} \end{aligned}$$
(6.34)

1.3 Proof of optimal power transmission with constraint when \(\varOmega =0\)

The Lagrangian approach [40] providing the solution to the optimization problem stated above in Eqs. (20a) and (20b) for the inactive \(PT_x\) (\(\varOmega = 0\)) is as follows:

$$\begin{aligned} l(P_s,\delta _a) = P_s + \delta _a (S_{D.min}-S_D ) \end{aligned}$$
(6.35)

here \(\delta _a\) is positive variable mutual to the constraint given in Eq. (20b). Now deriving \(l(P_s,\delta _a)\) in Eq. (6.35) with respect to \(\delta _a\), we get:

$$\begin{aligned} \frac{\mathrm {d} l(P_s,\delta _a)}{\mathrm {d} \delta _a} = S_{D.min} +\frac{t_d p_r(\varOmega = 0) (p_f-1) \log \left( 1+\frac{g_{ss}^2 P_s}{\sigma ^2} \right) }{\log (2)(t_s+t_d)} \end{aligned}$$
(6.36)

Now taking Eq. (6.36) and equaling it to zero, corresponding \(P_s^{3}\) is:

$$\begin{aligned}&\frac{dl(P_s,\delta _a)}{d\delta _a} = 0 \nonumber \\&\quad \Rightarrow S_{D.min}+\frac{t_d p_r(\varOmega = 0) (p_f-1) \log \left( 1+\frac{g_{ss}^2P_s}{\sigma ^2}\right) }{\log (2)(t_s+t_d)}=0 \nonumber \\&\quad \Rightarrow \log (2) (t_s+t_d) S_{D.min} + t_d p_r(\varOmega = 0) (p_f-1) \log \left( 1+\frac{g_{ss}^2P_s}{\sigma ^2} \right) = 0 \nonumber \\&\quad \Rightarrow \, \log \left( 1+\frac{g_{ss}^2P_s}{\sigma ^2} \right) \nonumber \\&\quad = - \frac{\log (2) (t_s+t_d) S_{D.min}}{t_d p_r(\varOmega = 0) (p_f-1)} \nonumber \\&\quad \Rightarrow \, 1+\frac{g_{ss}^2P_s}{\sigma ^2} \nonumber \\&\quad =\exp {\left( - \frac{\log (2)(t_s+t_d)S_{D.min}}{t_d p_r(\varOmega = 0) (p_f-1)} \right) } \nonumber \\&\quad \Rightarrow \, P_{s}^{3} = \frac{\sigma ^2}{g_{ss}^2}\nonumber \\&\quad \left( \exp \left( - \frac{\log (2)(t_s+t_d)S_{D.min}}{t_d p_r(\varOmega = 0) (p_f-1)} \right) - 1 \right) \end{aligned}$$
(6.37)

Finally putting the value of \(P_s^{3}\) in Eq. (6.35), we get

$$\begin{aligned} l(P_s^{3},\delta _a) = P_s^{3} \end{aligned}$$
(6.38)

1.4 Proof of optimal power transmission with constraint when \(\varOmega =1\)

The Lagrangian approach [40] providing the solution to the optimization problem stated above in Eqs. (22a), and (22b) for the active \(PT_x\) (\(\varOmega = 1\)) is as follows:

$$\begin{aligned} l(P_s,\delta _b) = P_s + \delta _{b} (S_{I.min} - S_I) \end{aligned}$$
(6.39)

here \(\delta _b\) is positive variable mutual to the constraint given in Eq. (22b). Now deriving \(l(P_s,\delta _b)\) in Eq. (6.39) with respect to \(\delta _b\), we get:

$$\begin{aligned}&\frac{\mathrm {d} l(P_s,\delta _b)}{\mathrm {d} \delta _b}\nonumber \\&\quad = S_{I.min} - \frac{t_d p_r(\varOmega = 1) (1-p_d) \log \left( 1+\frac{g_{ss}^2 P_s}{(1+\gamma _p g_{ps}^2)\sigma ^2 } \right) }{\log (2)(t_s+t_d)} \end{aligned}$$
(6.40)

Now taking Eq. (6.40) and equaling it to zero, corresponding \(P_s^{4}\) is:

$$\begin{aligned}&\frac{dl(P_s,\delta _b)}{d\delta _b} = 0 \nonumber \\&\quad \Rightarrow S_{I.min}+\frac{t_d p_r(\varOmega = 1) (p_d-1) \log \left( 1+\frac{g_{ss}^2 P_s}{(1+\gamma _p g_{ps}^2)\sigma ^2} \right) }{\log (2)(t_s+t_d)} = 0 \nonumber \\&\quad \Rightarrow \log (2)(t_s+t_d) S_{I.min} \nonumber \\&\qquad +t_d p_r(\varOmega = 1) (p_d-1) \log \left( 1+\frac{g_{ss}^2 P_s}{(1+\gamma _p g_{ps}^2)\sigma ^2} \right) =0 \nonumber \\&\quad \Rightarrow \log \left( 1+\frac{g_{ss}^2 P_s}{(1+\gamma _p g_{ps}^2)\sigma ^2} \right) =- \frac{\log (2)(t_s+t_d)S_{I.min}}{t_d p_r(\varOmega = 1)(p_d-1)} \nonumber \\&\quad \Rightarrow \, 1+\frac{g_{ss}^2 P_s}{(1+\gamma _p g_{ps}^2) \sigma ^2 } =\exp {\left( - \frac{\log (2)(t_s+t_d)S_{I.min}}{t_d p_r(\varOmega = 1)(p_d-1)} \right) } \nonumber \\&\quad \Rightarrow \, P_s^{4} = \frac{(1+\gamma _p g_{ps}^2)\sigma ^2}{g_{ss}^2} \left( \exp {\left( -\frac{\log (2)(t_s+t_d) S_{I.min}}{t_d p_{r}\left( \varOmega =1 \right) (p_d-1)} \right) } -1 \right) \end{aligned}$$
(6.41)

Finally putting the value of \(P_s^{4}\) in Eq. (6.39), we get

$$\begin{aligned} l(P_s^{4},\delta _b) = P_s^{4} \end{aligned}.$$
(6.42)

1.5 Proof of optimal power transmission for interference minimization when \(\varOmega =1\)

To solve the optimization problem in Eq. (28), we assume the transmit power \(P_s\) on the interval \([0,P_{max}]\). As shown in Fig. 15, we can see that \(S_{I}(P_s)\) increases at first and then stables as \(P_s\) increases. So \(S_{I}(P_s)\) achieves the maximum value between \(P_s\) and \(P_{max}\). For this reason, we find the optimization solution due to the consideration of \(P_s \le P_{max}\) (Eq. (28c)).

Fig. 15
figure 15

Interference throughput and minimum required interference throughput at various transmit power considering \(n = 2\) and \(p_r (\varOmega =1) = 0.5\)

The Lagrangian approach [40] providing the solution to the optimization problem stated above in Eqs. (28a), (28b) and (28c) for the active \(PT_x\) (\(\varOmega = 1\)) is as follows:

$$\begin{aligned} l(P_s,\delta _b,\delta _c) = P_s g_{sp}^{2} + \delta _{b} (S_{I.min} - S_I)+\delta _c(P_s-P_{max}) \end{aligned}$$
(6.43)

here \(\delta _b\) and \(\delta _c\) are positive variable mutual to the constraints given in Eqs. (28b) and (28c).

The Karush–Kuhn–Tucker (KKT) conditions are necessary to obtain optimal solution, and the following KKT conditions are

$$ \left\{ {\begin{array}{*{20}c} {} & {\delta _{b} \ge 0,\delta _{c} \ge 0} \\ {} & {\delta _{b} (S_{{I.min}} - S_{I} ) = 0} \\ {} & {\delta _{c} (P_{s} - P_{{max}} ) = 0} \\ {} & {\frac{{{\text{d}}l(P_{s} ,\delta _{b} ,\delta _{c} )}}{{{\text{d}}P_{s} }} = 0,\frac{{{\text{d}}l(P_{s} ,\delta _{b} ,\delta _{c} )}}{{{\text{d}}\delta _{b} }} = 0,\frac{{{\text{d}}l(P_{s} ,\delta _{b} ,\delta _{c} )}}{{{\text{d}}\delta _{c} }} = 0} \\ \end{array} } \right. $$
(6.44)

Now deriving \(l(P_s,\delta _b,\delta _c)\) in Eq. (6.43) with respect to \(\delta _b\), we get:

$$\begin{aligned}&\frac{\mathrm {d} l(P_s,\delta _b,\delta _c,\delta _d)}{\mathrm {d} \delta _b}\nonumber \\&\quad = S_{I.min} - \frac{t_d p_r(\varOmega = 1) (1-p_d)\log \left( 1+\frac{g_{ss}^2P_s}{(1+\gamma _p g_{ps}^2)\sigma ^2 } \right) }{\log (2)(t_s+t_d)} \end{aligned}$$
(6.45)

Now taking Eq. (6.45) and equaling it to zero, corresponding \(P_s\) is:

$$\begin{aligned}&\frac{dl(P_s,\delta _b,\delta _c)}{d\delta _b} = 0 \nonumber \\&\quad \Rightarrow S_{I.min}+\frac{t_d p_r(\varOmega = 1) (p_d-1) \log \left( 1+\frac{g_{ss}^2P_s}{(1+\gamma _p g_{ps}^2)\sigma ^2} \right) }{\log (2)(t_s+t_d)} = 0 \nonumber \\&\quad \Rightarrow \log \left( 1+\frac{g_{ss}^2 P_s}{(1+\gamma _p g_{ps}^2)\sigma ^2} \right) \nonumber \\&\quad =- \frac{\log (2)(t_s+t_d)S_{I.min}}{t_d p_r(\varOmega = 1)(p_d-1)} \nonumber \\&\quad \Rightarrow \, 1+\frac{g_{ss}^2 P_s}{(1+\gamma _p g_{ps}^2) \sigma ^2 }\nonumber \\&\quad =\exp {\left( - \frac{\log (2)(t_s+t_d)S_{I.min}}{t_d p_r(\varOmega = 1)(p_d-1)} \right) } \nonumber \\&\quad \Rightarrow \, P_s = \frac{(1+\gamma _p g_{ps}^2)\sigma ^2}{g_{ss}^2} \nonumber \\&\qquad \left( \exp {\left( -\frac{\log (2)(t_s+t_d) S_{I.min}}{t_d p_{r}\left( \varOmega =1 \right) (p_d-1)} \right) } -1 \right) \end{aligned}$$
(6.46)

Next, deriving \(l(P_s,\delta _b,\delta _c)\) in Eq. (6.43) with respect to \(\delta _c\), we get:

$$\begin{aligned}&\frac{dl(P_s,\delta _b,\delta _c)}{d\delta _c}= P_s - P_{max} = 0\nonumber \\&\therefore P_s = P_{max} \end{aligned}$$
(6.47)

Finally combining Eqs. (6.46) and (6.47), we get

$$\begin{aligned} P_s^{5}= & {} P_{max} \nonumber \\= & {} \frac{(1+\gamma _p g_{ps}^2)\sigma ^2}{g_{ss}^2} \left( \exp {\left( -\frac{\log (2)(t_s+t_d) S_{I.min}}{t_d p_{r}\left( \varOmega =1 \right) (p_d-1)} \right) } -1 \right) \end{aligned}$$
(6.48)

The optimal solution \(P_s^{5}\) is satisfy to the Lagrangian function in Eq. (6.43) when the KKT conditions are \(S_{I.min} - S_I = 0\) and \(P_s - P_{max} = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahul, A.R., Sabuj, S.R., Akbar, M.S. et al. An optimization based approach to enhance the throughput and energy efficiency for cognitive unmanned aerial vehicle networks. Wireless Netw 27, 475–493 (2021). https://doi.org/10.1007/s11276-020-02450-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02450-9

Keywords

Navigation