Skip to main content
Log in

Performance optimization of smartphones in dual-band high-efficiency and very high throughput mobile networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

By focusing on dense areas, 802.11ax high-efficiency wireless (HEW) standard offers some improvements over 802.11ac very high throughput (VHT). The HEW improvements are mainly based on several key factors and diversity of their values. While each particular value corresponds to a key factor can directly affect the network performance, there is a great deal of uncertainty regarding their practical effectiveness in dense areas. Thus, identifying the efficiency of each particular value of the key factors is of prime importance for determining the optimal values and thereby enhancing the network performance. However, identifying the optimal values in wireless dense areas where a large number of users share the same link is a challenging task and needs comprehensive comparative approaches. In this context, this work proposes a model for high-density HEW and VHT deployment with a special focus on their common key factors. The model includes 204 distinct simulation scenarios, categorized under six major classes, each corresponds to a particular key factor. The model is implemented and the results are obtained to determine the optimal values of the key factors. Moreover, to validate the accuracy of the simulation results, the analytical results are obtained and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

All the required data is in the manuscript.

Code availability

The required code is available in the manuscript itself.

References

  1. Vijay, B. T., & Malarkodi, B. (2019). High-efficiency WLANs for dense deployment scenarios. Springer Journal of the Indian Academy of Science, 44, 33.

    Google Scholar 

  2. Naik A., Bhattarai S., & Park J. M. (2018). Performance analysis of uplink multi-user OFDMA in IEEE 802.11ax. In IEEE international conference on communications (ICC), Kansas City, MO, USA.

  3. Khorov, E., Kiryanov, A., Lyakhov, A., & Bianchi, G. (2019). A tutorial on IEEE 802.11ax high efficiency WLANs. IEEE Communications Surveys & Tutorials, 21(1), 197–216.

    Article  Google Scholar 

  4. Gong, M. X., Hart, B., & Mao, S. (2014). Advanced wireless LAN technologies: IEEE 802.11ac and beyond. ACM Mobile Computing and Communications, 18(4), 48–52.

    Google Scholar 

  5. Gast, M. S. (2013). 802.11ac: A survival guide: Wi-Fi at gigabit and beyond. Sebastopol: O'Reilly Media Inc. Publications.

    Google Scholar 

  6. Karmakar, R., Chattopadhyay, S., & Chakraborty, S. (2017). Impact of IEEE 802.11n/ac PHY/MAC high throughput enhancements on transport and application protocols—A survey. IEEE Communications Surveys & Tutorials, 19(4), 2050–2091.

    Article  Google Scholar 

  7. Afaqui, M. S., Villegas, E. G., & Aguilera, E. L. (2017). IEEE 802.11ax: Challenges and requirements for future high efficiency Wi-Fi. IEEE Journal of Wireless Communications, 24(3), 130–137.

    Article  Google Scholar 

  8. Ali, M. Z., Misic, J., & Misic, V. B. (2019). Bridging the transition from IEEE 802.11ac to IEEE 802.11ax: Survival of EDCA in a coexistence environment. IEEE Journal of Network, 33(3), 102–107.

    Article  Google Scholar 

  9. Selinis, I., Katsaros, K., Allayioti, M., Vahid, S., & Tafazolli, R. (2018). The race to 5G Era; LTE and Wi-Fi. IEEE Access, 6, 56598–56636.

    Article  Google Scholar 

  10. Yazid, M., Bouallouche, L. M., & Aïssani, D. (2016). Performance study of frame aggregation mechanisms in the new generation WiFi. In Proceedings of the 10th workshop on verification and evaluation of computer and communication system (VECoS), Tunis, Tunisia.

  11. Assasa, H., Saha, S. K., Loch, A., Koutsonikolas, D., & Widmer, J. (2018). Medium access and transport protocol aspects in practical 802.11ad networks. In IEEE 19th international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), Chania, Greece.

  12. Simić, L., Riihijärvi, J., & Mähönen, P. (2017). Measurement study of IEEE 802.11ac Wi-Fi performance in high density indoor deployments: Are wider channels always better? In IEEE 18th international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), Macau, China.

  13. Bellalta, B., & Szott, K. K. (2019). AP-initiated multi-user transmissions in IEEE 802.11ax WLANs. Elsevier Ad Hoc Networks, 85, 145–159.

    Article  Google Scholar 

  14. Sharon, O., & Alpert, Y. (2017). Optimizing TCP goodput and delay in next generation IEEE 802.11 (ax) devices. Transactions on Network and Communication, 6, 14.

    Google Scholar 

  15. Sharon, O., & Alpert, Y. (2017). Scheduling strategies and throughput optimization for the uplink for IEEE 802.11ax and IEEE 802.11ac based networks. Journal of Wireless Sensor Network, 2017, 250–273.

    Article  Google Scholar 

  16. Das, S., Kar, P., & Barman, S. (2017). Analysis of IEEE 802.11 WLAN frame aggregation under different network conditions. In IEEE international conference on wireless communications, signal processing and networking (WiSPNET), Chennai, India.

  17. Machrouh, Z. & Najid, A. (2018). High efficiency IEEE 802.11ax MU-MIMO and frame aggregation analysis. In IEEE international conference on advanced communication technologies and networking (CommNet), Marrakech, Morocco.

  18. Lee, W. H., & Hwang, H. Y. (2019). A-MPDU aggregation with optimal number of MPDUs for delay requirements in IEEE 802.11ac. Journal of PLOS ONE, 14(3), e0213888.

    Article  Google Scholar 

  19. Amewuda, A. B., Katsriku, F. A., & Abdulai, J. D. (2018). Implementation and evaluation of WLAN 802.11ac for residential networks in NS-3. Hindawi Journal of Computer Networks and Communications. https://doi.org/10.1155/2018/3518352.

    Article  Google Scholar 

  20. Mahecha, J. S. S., Céspedes, S., & Jiménez, J. B. (2018). QoS evaluation of the future high-efficiency IEEE 802.11ax WLAN standard. In IEEE Colombian conference on communications and computing (COLCOM), Medellin, Colombia.

  21. Doliska, I., Jakubowski, M., & Masiukiewicz, A. (2019). New IEEE 802.11 HEW standard throughput per user analysis. In IEEE international conference on information and digital technologies (IDT), Zilina, Slovakia.

  22. Bellalta, B., Checco, A., Zocca, A., & Barcelo, J. (2016). On the interactions between multiple overlapping WLANs using channel bonding. IEEE Transactions on Vehicular Technology, 65(2), 796–812.

    Article  Google Scholar 

  23. Daldoul, Y., Meddour, D. E., & Ksentini, A. (2017). IEEE 802.11ac: Effect of channel bonding on spectrum utilization in dense environments. In IEEE international conference on communications (ICC), Paris, France.

  24. Yazid, M., & Ksentini, A. (2019). Stochastic modeling of the static and dynamic multichannel access methods enabling 40/80/160 MHz channel bonding in the VHT WLANs. IEEE Communications Letters, 23(8), 1437–1440.

    Article  Google Scholar 

  25. Milos, J., Polak, L., & Slanina, M. (2017). Performance analysis of IEEE 802.11ac/ax WLAN technologies under the presence of CFO. In IEEE 27th international conference radioelektronika, Brno, Czech Republic.

  26. Karmakar, R. (2019). Online learning-based energy-efficient frame aggregation in high throughput WLANs. IEEE Communications Letters, 23(4), 712–715.

    Article  Google Scholar 

  27. Kwon, D., & Kim, J. (2018). Opportunistic medium access for hyper-dense beamformed IEEE 802.11ax wireless networks. In International conference on information and communication technology convergence, Jeju, South Korea.

  28. Kwon, D., Kim, S. W., Kim, J., & Mohaisen, A. (2018). Interference-aware adaptive beam alignment for hyper-dense IEEE 802.11ax Internet-of-Things networks. Journal of Sensors, 18, 3364.

    Article  Google Scholar 

  29. Ajami, A. K., & Artail, H. (2019). Analyzing the impact of the coexistence with IEEE 802.11ax Wi-Fi on the performance of DSRC using stochastic geometry modeling. IEEE Transactions on Communications, 67(9), 6343–6359.

    Article  Google Scholar 

  30. NS-3 discrete-event network simulator. Retrieved April 10, 2020, from https://www.nsnam.org.

  31. Deng, D. J., Lien, S. Y., Lee, J., & Chen, K. C. (2016). On quality-of-service provisioning in IEEE 802.11ax WLANs. IEEE Access, 4, 6086–6104.

    Article  Google Scholar 

  32. Luthra, V., & Kamath, H. S. (2019). Performance analysis of MIMO techniques in LTE. Journal of Communications, 14(6), 524–529.

    Article  Google Scholar 

  33. Masiukiewicz, A. (2019). Throughput comparison between the new HEW 802.11ax standard and 802.11n/ac standards in selected distance windows. International Journal of Electronics and Telecommunications, 65(1), 79–84.

    Google Scholar 

  34. Khan, G. Z., Gonzalez, R., Park, E. C., & Wu, X. W. (2016). Analysis of very high throughput (VHT) at MAC and PHY layers under MIMO channel in IEEE 802.11ac WLAN. Transactions on Advanced Communications Technology, 5(4), 877–888.

    Google Scholar 

  35. Lee, K. H. (2019). Performance analysis of the IEEE 802.11ax MAC protocol for heterogeneous Wi-Fi networks in non-saturated conditions. MDPI Sensors, 19, 1540.

    Article  Google Scholar 

  36. High Density Wi-Fi Deployments. Resource document. Cisco. Retrieved April 10, 2020, from https://documentation.meraki.com/Architectures_and_Best_Practices/Cisco_Meraki_Best_Practice_Design/Best_Practice_Design_-_MR_Wireless/High_Density_Wi-Fi_Deployments.

Download references

Funding

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Malekzadeh.

Ethics declarations

Conflict of interest

This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekzadeh, M. Performance optimization of smartphones in dual-band high-efficiency and very high throughput mobile networks. Wireless Netw 27, 495–525 (2021). https://doi.org/10.1007/s11276-020-02467-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02467-0

Keyword

Navigation