Skip to main content

Advertisement

Log in

An efficient data routing scheme for multi-patient monitoring in a biomedical sensor network through energy equalization strategy

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Biomedical sensor networks find wide applications in human health monitoring. In such applications, routing strategies in the sensor nodes play a key role towards energy efficiency of the overall system. In this work, we present a new data routing scheme, which is based on residual energy in a node and equalization (named EEQ) among the neighbours to achieve enhanced average node lifetime under short range monitoring scenario. The scheme was hardware implemented using 12 number of indigenous ATmega328 based static biomedical sensor nodes (BSN) arranged in a grid matrix spread over a floor area of 564 sqm. The objective was to collect short duration electrocardiogram and photoplethysmogram signals from human subjects in a local supervisory computer placed outside the grid. Under simulation platform using 100 BSNs with first order radio model, it was found that the average node lifetime was enhanced by 17% against without EEQ evaluated over 10,000 consecutive data collection sessions. The proposed scheme can be useful for providing low cost solution in healthcare settings in developing nations like India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jiang, D., Huo, L., Lv, Z., Song, H., & Qin, W. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems, 19, 3305–3319. https://doi.org/10.1109/TITS.2017.2778939.

    Article  Google Scholar 

  2. Jiang, D., Zhang, P., Lv, Z., & Song, H. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things Journal, 3, 1437–1447. https://doi.org/10.1109/JIOT.2016.2613111.

    Article  Google Scholar 

  3. Jiang, D., Wang, Y., Lv, Z., Qi, S., & Singh, S. (2020). Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Transactions on Industrial Informatics, 16, 1310–1320. https://doi.org/10.1109/TII.2019.2930226.

    Article  Google Scholar 

  4. Qi, S., Jiang, D., & Huo, L. (2019). A prediction approach to end-to-end traffic in space information networks. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01424-2.

    Article  Google Scholar 

  5. Jiang, D., Li, W., & Lv, H. (2017). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing, 220, 160–169. https://doi.org/10.1016/j.neucom.2016.07.056.

    Article  Google Scholar 

  6. Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54, 2688–2710. https://doi.org/10.1016/j.comnet.2010.05.003.

    Article  Google Scholar 

  7. Lee, H. J., Lee, S. H., Ha, K. S., Jang, H. C., Chung, W. Y., Kim, J. Y., et al. (2009). Ubiquitous healthcare service using Zigbee and mobile phone for elderly patients. International Journal of Medical Informatics, 78, 193–198. https://doi.org/10.1016/j.ijmedinf.2008.07.005.

    Article  Google Scholar 

  8. Xu, X., Wu, M., Ding, C., Sun, B., & Zhang, J. (2010). Outdoor wireless healthcare monitoring system for hospital patients based on ZigBee. In Proceedings of the 2010 5th IEEE conference on industrial electronics and applications, ICIEA 2010. https://doi.org/10.1109/ICIEA.2010.5517084.

  9. Sahandi, R., Noroozi, S., Roushan, G., Heaslip, V., & Liu, Y. (2010). Wireless technology in the evolution of patient monitoring on general hospital wards. Journal of Medical Engineering & Technology. https://doi.org/10.3109/03091900903336902.

    Article  Google Scholar 

  10. Fernández-López, H., Macedo, P., Afonso, J. A., Correia, J. H., & Simões, R. (2010). Evaluation of the impact of the topology and hidden nodes in the performance of a ZigBee network. In Lecture notes of the institute for computer sciences, social-informatics and telecommunications engineering (pp. 256–271). https://doi.org/10.1007/978-3-642-11528-8_18.

  11. Kim, Y. H., Lim, I. K., Lee, J. P., Lee, J. G., & Lee, J. K. (2013). Study on low-power transmission protocols for ZigBee wireless network-based remote biosignal monitoring systems. In Lecture notes in electrical engineering (pp. 709–716). https://doi.org/10.1007/978-94-007-5857-5_76.

  12. Fernández-López, H., Correia, J. H., Simões, R., & Afonso, J. A. (2011). Experimental evaluation of IEEE 802.15.4/ZigBee for multi-patient ECG monitoring. In Lecture notes of the institute for computer sciences, social-informatics and telecommunications engineering (pp. 184–191) (2011). https://doi.org/10.1007/978-3-642-23635-8_23.

  13. Wu, M., & Xie, Q. (2012). The design of wireless medical monitoring network based on ZigBee. In NCIS 2012: Network computing and information security (pp. 705–713). Berlin: Springer. https://doi.org/10.1007/978-3-642-35211-9_89.

  14. Wu, M., Zhou, W., & Hou, H. (2012). Design and application of ZiGbee locating and transparent transmission serial port module for tele-health monitoring. Communications in Computer and Information Science. https://doi.org/10.1007/978-3-642-35211-9_90.

    Article  Google Scholar 

  15. Magno, M., Spagnol, C., Benini, L., & Popovici, E. (2014). A low power wireless node for contact and contactless heart monitoring. Microelectronics Journal, 45, 1656–1664. https://doi.org/10.1016/j.mejo.2014.07.002.

    Article  Google Scholar 

  16. Yseboodt, L., De Nil, M., Huisken, J., Berekovic, M., Zhao, Q., Bouwens, F., et al. (2009). Design of 100 μw wireless sensor nodes for biomedical monitoring. Journal of Signal Processing Systems, 57, 107–119. https://doi.org/10.1007/s11265-008-0255-x.

    Article  Google Scholar 

  17. Wang, L. H., Chen, T. Y., Lin, K. H., Fang, Q., & Lee, S. Y. (2015). Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications. IEEE Journal of Biomedical and Health Informatics, 19, 247–255. https://doi.org/10.1109/JBHI.2014.2311232.

    Article  Google Scholar 

  18. Gajjar, S., Sarkar, M., & Dasgupta, K. (2014). Self organized, flexible, latency and energy efficient protocol for wireless sensor networks. International Journal of Wireless Information Networks, 21, 290–305. https://doi.org/10.1007/s10776-014-0251-y.

    Article  Google Scholar 

  19. Jiang, D., Wang, Y., Zhihan, L., Wang, W., & Wang, H. (2020). An energy-efficient networking approach in cloud services for IIoT networks. IEEE Journal on Selected Areas in Communications, 38, 928–941. https://doi.org/10.1109/JSAC.2020.2980919.

    Article  Google Scholar 

  20. Wang, Y., Jiang, D., Huo, L., & Zhao, Y. (2019). A new traffic prediction algorithm to software defined networking. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01423-3.

    Article  Google Scholar 

  21. Zhang, H., & Shen, H. (2010). Energy-efficient beaconless geographic routing in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 21, 881–896. https://doi.org/10.1109/TPDS.2009.98.

    Article  Google Scholar 

  22. Huang, H., Hu, G., Yu, F., & Zhang, Z. (2011). Energy-aware interference-sensitive geographic routing in wireless sensor networks. IET Communications, 5, 2692–2702.

    Article  MathSciNet  Google Scholar 

  23. Yuce, M. R., Ng, P. C., & Khan, J. Y. (2008). Monitoring of physiological parameters from multiple patients using wireless sensor network. Journal of Medical Systems, 32, 433–441. https://doi.org/10.1007/s10916-008-9149-5.

    Article  Google Scholar 

  24. Abreu, C., Ricardo, M., & Mendes, P. M. (2014). Energy-aware routing for biomedical wireless sensor networks. Journal of Network and Computer Applications, 40, 270–278. https://doi.org/10.1016/j.jnca.2013.09.015.

    Article  Google Scholar 

  25. Yadav, S., & Yadav, R. S. (2016). A review on energy efficient protocols in wireless sensor networks. Wireless Networks, 22, 335–350. https://doi.org/10.1007/s11276-015-1025-x.

    Article  Google Scholar 

  26. Qin, D., Ji, P., Yang, S., & Berhane, T. M. (2019). An efficient data collection and load balance algorithm in wireless sensor networks. Wireless Networks, 25, 3703–3714. https://doi.org/10.1007/s11276-017-1652-5.

    Article  Google Scholar 

  27. Effatparvar, M., Dehghan, M., & Rahmani, A. M. (2016). A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks. Journal of Medical Systems. https://doi.org/10.1007/s10916-016-0556-8.

    Article  Google Scholar 

  28. Marinković, S. J., Popovici, E. M., Spagnol, C., Faul, S., & Marnane, W. P. (2009). Energy-efficient low duty cycle MAC protocol fo wireless body area networks. IEEE Transactions on Information Technology in Biomedicine, 13, 915–925. https://doi.org/10.1109/TITB.2009.2033591.

    Article  Google Scholar 

  29. Chen, S. L., Lee, H. Y., Chen, C. A., Huang, H. Y., & Luo, C. H. (2009). Wireless body sensor network with adaptive low-power design for biometrics and healthcare applications. IEEE Systems Journal, 3, 398–409. https://doi.org/10.1109/JSYST.2009.2032440.

    Article  Google Scholar 

  30. Bouachir, O., Ben Mnaouer, A., & Touati, F. (2016). PEAM: A polymorphic, energy-aware MAC protocol for WBAN. In 2016 23rd international conference on telecommunications, ICT 2016. https://doi.org/10.1109/ICT.2016.7500491.

  31. Pérez-Solano, J. J., & Felici-Castell, S. (2017). Improving time synchronization in wireless sensor networks using Bayesian inference. Journal of Network and Computer Applications, 82, 47–55. https://doi.org/10.1016/j.jnca.2017.01.007.

    Article  Google Scholar 

  32. Chen, B., & Pompili, D. (2011). Transmission of patient vital signs using wireless body area networks. Mobile Networks and Applications, 16, 663–682. https://doi.org/10.1007/s11036-010-0253-7.

    Article  Google Scholar 

  33. Khan, Z., Aslam, N., Sivakumar, S., & Phillips, W. (2012). Energy-aware peering routing protocol for indoor hospital body area network communication. Procedia Computer Science. https://doi.org/10.1016/j.procs.2012.06.027.

    Article  Google Scholar 

  34. Khan, Z. A., Sivakumar, S., Phillips, W., & Robertson, B. (2013). A QoS-aware routing protocol for reliability sensitive data in hospital body area networks. Procedia Computer Science. https://doi.org/10.1016/j.procs.2013.06.027.

    Article  Google Scholar 

  35. Kulshrestha, J., & Mishra, M. K. (2017). An adaptive energy balanced and energy efficient approach for data gathering in wireless sensor networks. Ad Hoc Networks, 54, 130–146. https://doi.org/10.1016/j.adhoc.2016.10.013.

    Article  Google Scholar 

  36. Lipare, A., Edla, D. R., & Kuppili, V. (2019). Energy efficient load balancing approach for avoiding energy hole problem in WSN using Grey Wolf Optimizer with novel fitness function. Soft Computer Journal Applications. https://doi.org/10.1016/j.asoc.2019.105706.

    Article  Google Scholar 

  37. Mohemed, R. E., Saleh, A. I., Abdelrazzak, M., & Samra, A. S. (2017). Energy-efficient routing protocols for solving energy hole problem in wireless sensor networks. Computer Networks, 114, 51–66. https://doi.org/10.1016/j.comnet.2016.12.011.

    Article  Google Scholar 

  38. Nilsaz Dezfouli, N., & Barati, H. (2020). A distributed energy-efficient approach for hole repair in wireless sensor networks. Wireless Networks, 26, 1839–1855. https://doi.org/10.1007/s11276-018-1867-0.

    Article  Google Scholar 

  39. Qureshi, K. N., Din, S., Jeon, G., & Piccialli, F. (2020). Link quality and energy utilization based preferable next hop selection routing for wireless body area networks. Computer Communications, 149, 382–392. https://doi.org/10.1016/j.comcom.2019.10.030.

    Article  Google Scholar 

  40. Gupta, R., Bera, J. N., & Mitra, M. (2012). An intelligent telecardiology system for offline wireless transmission and remote analysis of ECG. Journal of Medical Engineering & Technology, 36, 358–365. https://doi.org/10.3109/03091902.2012.712200.

    Article  Google Scholar 

  41. Chandra, S., Gupta, R., Ghosh, S., & Mondal, S. (2019). An intelligent and power efficient biomedical sensor node for wireless cardiovascular health monitoring. IETE Journal Research. https://doi.org/10.1080/03772063.2019.1611489.

    Article  Google Scholar 

  42. Ds_Xbee Multipoint Modules Datasheet, https://www.digi.com/pdf/ds_xbeemultipointmodules.pdf.

  43. AD8232 front end. http://www.analog.com/media/en/technical-documentation/data-sheets/AD8232.pdf.

  44. Easy Pulse PPG sensor. http://embedded-lab.com/blog/easy-pulse-version-1-1-sensor-overview-part-2/.

  45. Bera, P., & Gupta, R. (2016). Real-time compression of electrocardiogram using dynamic bit allocation strategy. In 2016 IEEE 1st international conference on control, measurement and instrumentation (CMI 2016) (pp. 21–25). https://doi.org/10.1109/CMI.2016.7413703.

Download references

Acknowledgements

The work is funded by Department of Higher Education, Science & Technology and Biotechnology (DHESTB), Govt. of West Bengal [sanction No.851(sanc.)/ST/P/S&T/6G-2/2013 dtd: 11/01/2016]. The authors sincerely thank Dr. Arunansu Talukdar, Professor in Medicine Department, Medical College and Hospital, Kolkata for his cooperation in performance testing of the BSNs in the hospital ward. The Authors also thank the SAP DRS-II program (2015-2020) from University Grants Commission (UGC) at Department of Applied Physics, University of Calcutta for the technical support. Soumyak Chandra also acknowledges the Centre of Excellence for Systems Biology & Biomedical Engineering, University of Calcutta for the SRA fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Chandra, A. & Gupta, R. An efficient data routing scheme for multi-patient monitoring in a biomedical sensor network through energy equalization strategy. Wireless Netw 27, 635–648 (2021). https://doi.org/10.1007/s11276-020-02472-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02472-3

Keywords

Navigation