Skip to main content
Log in

A robust indoor localization method with calibration strategy based on joint distribution adaptation

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Device-free localization (DFL) systems have aroused extensive attention because it is more convenient than device-enabled localization systems, and fingerprint-based localization method is usually used in DFL systems. Although fine-grained information can be provided by the channel state information (CSI), but changes in the environment over time can cause the CSI become different. Therefore, the real-time CSI data can’t match with the data in the fingerprint map established beforehand very well, which can lead to the inaccuracy of the positioning result. This paper presents a DFL system, which adopts transfer learning method to update the fingerprint map and employs the Light Gradient Boosting Machine (LightGBM) algorithm to train the fingerprint map. Wavelet transform is used in this paper to filter the noise in the raw CSI data and the CSI data on a portion of the fingerprint points are collected to update the established fingerprint map by joint distribution adaptation in the update stage. After classifying the CSI data of the testing point by LightGBM, the position coordinate is achieved by the confidence regression method. By using LightGBM, the proposed system can achieve the average distance error of 0.48m, outperforming the result by using eXtreme Gradient Boosting (XGBoost) and Gradient Boost Decision Tree (GBDT). According to the result of the four-week experiment, the average distance error of this system can be decreased by 21% compared with not using the calibration method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pala, S., Jayan, S., & Kurup, D. G. (2020). An accurate UWB based localization system using modified leading edge detection algorithm. Ad Hoc Networks, 97, 102017.

    Article  Google Scholar 

  2. Tarricone, L., & Grosinger, J. (2020). Augmented RFID technologies for the internet of things and beyond. Sensors20, 987.

    Google Scholar 

  3. Wang, Q., Yin, X., Tan, J., Xing, T., Niu, J., & Fang, D. (2019). Dtransfer: Extremely low cost localization irrelevant to targets and regions for activity recognition. Personal and Ubiquitous Computing, 23(1), 3–16.

    Article  Google Scholar 

  4. Xiong, J., Sundaresan, K., & Jamieson, K. (2015). Tonetrack: Leveraging frequency-agile radios for time-based indoor wireless localization. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking (pp. 537–549).

  5. Wang, G., Qian, C., Shangguan, L., Ding, H., Han, J., Cui, K., et al. (2019). HMO: Ordering RFID tags with static devices in mobile environments. IEEE Transactions on Mobile Computing, 19(1), 74–89.

    Article  Google Scholar 

  6. Bai, Y.B., Gu, T., & Hu, A. (2016). Integrating Wi-Fi and magnetic field for fingerprinting based indoor positioning system. In 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (pp. 1–6) IEEE.

  7. Hardegger, M., Roggen, D., & Tröster, G. (2015). 3d actionslam: Wearable person tracking in multi-floor environments. Personal and ubiquitous computing, 19(1), 123–141.

    Article  Google Scholar 

  8. Li, X., Zhang, D., Lv, Q., Xiong, J., Li, S., Zhang, Y., et al. (2017). Indotrack: Device-free indoor human tracking with commodity wi-fi. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3), 1–22.

    Google Scholar 

  9. Li, H., Zeng, X., Li, Y., Zhou, S., & Wang, J. (2019). Convolutional neural networks based indoor wi-fi localization with a novel kind of csi images. China Communications, 16(9), 250–260.

    Article  Google Scholar 

  10. Wang, G., & Ho, K. (2019). Convex relaxation methods for unified near-field and far-field tdoa-based localization. IEEE Transactions on Wireless Communications, 18(4), 2346–2360.

    Article  Google Scholar 

  11. Zhang, H., Tan, S. Y., & Seow, C. K. (2019). Toa-based indoor localization and tracking with inaccurate floor plan map via mrmsc-phd filter. IEEE Sensors Journal, 19(21), 9869–9882.

    Article  Google Scholar 

  12. Bahl, P., & Padmanabhan, V. N. (2000). Radar: An in-building RF-based user location and tracking system. In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064) (Vol. 2, pp. 775–784), IEEE.

  13. Karegar, P. A. (2018). Wireless fingerprinting indoor positioning using affinity propagation clustering methods. Wireless Networks, 24(8), 2825–2833.

    Article  Google Scholar 

  14. Li, Y., Shi, G., Zhou, X., Qu, W., & Li, K. (2019). Reducing the site survey using fingerprint refinement for cost-efficient indoor location. Wireless Networks, 25(3), 1201–1213.

    Article  Google Scholar 

  15. Shi, S., Sigg, S., Chen, L., & Ji, Y. (2018). Accurate location tracking from CSI-based passive device-free probabilistic fingerprinting. IEEE Transactions on Vehicular Technology, 67(6), 5217–5230.

    Article  Google Scholar 

  16. Haeberlen, A., Flannery, E., Ladd, A. M., Rudys, A., Wallach, D. S., & Kavraki, L. E. (2004). Practical robust localization over large-scale 802.11 wireless networks. In Proceedings of the 10th Annual International Conference on Mobile Computing and Networking (pp. 70–84).

  17. Long, M., Wang, J., Ding, G., Sun, J., & Yu, P. S. (2003). Transfer feature learning with joint distribution adaptation. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2200–2207).

  18. Zhang, Y., Li, D., & Wang, Y. (2019). An indoor passive positioning method using CSI fingerprint based on adaboost. IEEE Sensors Journal, 19(14), 5792–5800.

    Article  Google Scholar 

  19. Wang, Y., Xiu, C., Zhang, X., & Yang, D. (2018). Wifi indoor localization with CSI fingerprinting-based random forest. Sensors, 18(9), 2869.

    Article  Google Scholar 

  20. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017) Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems (pp. 3146–3154).

  21. Zhao, B., Zhu, D., Xi, T., Jia, C., Jiang, S., & Wang, S. (2019). Convolutional neural network and dual-factor enhanced variational bayes adaptive kalman filter based indoor localization with Wi-Fi. Computer Networks, 162, 106864.

    Article  Google Scholar 

  22. Gong, W., & Liu, J. (2018). Roarray: Towards more robust indoor localization using sparse recovery with commodity wifi. IEEE Transactions on Mobile Computing, 18(6), 1380–1392.

    Article  Google Scholar 

  23. Qian, K., Wu, C., Yang, Z., Liu, Y., He, F., & Xing, T. (2018). Enabling contactless detection of moving humans with dynamic speeds using CSI. ACM Transactions on Embedded Computing Systems (TECS), 17(2), 1–18.

    Article  Google Scholar 

  24. Yin, Y., Song, C., Li, M., & Niu, Q. (2019). A CSI-based indoor fingerprinting localization with model integration approach. Sensors, 19(13), 2998.

    Article  Google Scholar 

  25. Wu, Z., Jiang, L., Jiang, Z., Chen, B., Liu, K., Xuan, Q., et al. (2018). Accurate indoor localization based on CSI and visibility graph. Sensors, 18(8), 2549.

    Article  Google Scholar 

  26. Gui, L., Yang, M., Yu, H., Li, J., Shu, F., & Xiao, F. (2018). A cramer-rao lower bound of CSI-based indoor localization. IEEE Transactions on Vehicular Technology, 67(3), 2814–2818.

    Article  Google Scholar 

  27. Alhasanat, A. I., Sharif, B. S., Tsimenidis, C. C., & Neasham, J. A. (2016). Efficient RSS-based collaborative localisation in wireless sensor networks. International Journal of Sensor Networks, 22(1), 27–36.

    Article  Google Scholar 

  28. Laitinen, E., & Lohan, E. S. (2016). Access point topology evaluation and optimization based on cramér-rao lower bound for wlan indoor positioning. In 2016 International Conference on Localization and GNSS (ICL-GNSS) (pp. 1–5), IEEE.

  29. Wu, K., Xiao, J., Yi, Y., Chen, D., Luo, X., & Ni, L. M. (2013). CSI-based indoor localization. IEEE Transactions on Parallel and Distributed Systems, 24(7), 1300–1309.

    Article  Google Scholar 

  30. Tian, X., Wang, C., & Du, L. (2019). Channel state information based efficient database construction for indoor localisation. The Journal of Engineering, 2019(8), 5355–5364.

    Article  Google Scholar 

  31. Nguyen, L. T., Kim, J., Kim, S., & Shim, B. (2019). Localization of IoT networks via low-rank matrix completion. IEEE Transactions on Communications, 67(8), 5833–5847.

    Article  Google Scholar 

  32. Njima, W., Zayani, R., Ahriz, I., Terre, M., & Bouallegue, R. (2019). Beyond stochastic gradient descent for matrix completion based indoor localization. Applied Sciences, 9(12), 2414.

    Article  Google Scholar 

  33. Li, Y., He, Z., Gao, Z., Zhuang, Y., Shi, C., & El-Sheimy, N. (2018). Toward robust crowdsourcing-based localization: A fingerprinting accuracy indicator enhanced wireless/magnetic/inertial integration approach. IEEE Internet of Things Journal, 6(2), 3585–3600.

    Article  Google Scholar 

  34. Zhang, M., Pei, L., & Deng, X. (2016). Graphslam-based crowdsourcing framework for indoor Wi-Fi fingerprinting. In 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS) (pp. 61–67), IEEE.

  35. Sun, S., Li, Y., Rowe, W. S., Wang, X., Kealy, A., & Moran, B. (2019). Practical evaluation of a crowdsourcing indoor localization system using hidden markov models. IEEE Sensors Journal, 19(20), 9332–9340.

    Article  Google Scholar 

  36. Zhang, P., Chen, R., Li, Y., Niu, X., Wang, L., Li, M., et al. (2018). A localization database establishment method based on crowdsourcing inertial sensor data and quality assessment criteria. IEEE Internet of Things Journal, 5(6), 4764–4777.

    Article  Google Scholar 

  37. Liu, K., Zhang, H., Ng, J. K.-Y., Xia, Y., Feng, L., Lee, V. C., et al. (2017). Toward low-overhead fingerprint-based indoor localization via transfer learning: Design, implementation, and evaluation. IEEE Transactions on Industrial Informatics, 14(3), 898–908.

    Article  Google Scholar 

  38. Zhou, M., Li, Y., Deng, Z., Sun, Y., Wang, Y., & Tian, Z. (2019). Indoor target intrusion detection via iterative transfer learning based cognitive sensing. Mobile Networks and Applications, 24(6), 2002–2013.

    Article  Google Scholar 

  39. Zou, H., Zhou, Y., Jiang, H., Huang, B., Xie, L., & Spanos, C. (2017). Adaptive localization in dynamic indoor environments by transfer kernel learning. In 2017 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1–6), IEEE.

  40. Ohara, K., Maekawa, T., Kishino, Y., Shirai, Y., & Naya, F. (2015). Transferring positioning model for device-free passive indoor localization. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 885–896).

  41. Sorour, S., Lostanlen, Y., Valaee, S., & Majeed, K. (2014). Joint indoor localization and radio map construction with limited deployment load. IEEE Transactions on Mobile Computing, 14(5), 1031–1043.

    Article  Google Scholar 

  42. Liu, W., Gao, X., Wang, L., & Wang, D. (2015). BFP: Behavior-free passive motion detection using PHY information. Wireless Personal Communications, 83(2), 1035–1055.

    Article  Google Scholar 

  43. Xiao, Y., Zhang, S., Cao, J., Wang, H., & Wang, J. (2017). Exploiting distribution of channel state information for accurate wireless indoor localization. Computer Communications, 114, 73–83.

    Article  Google Scholar 

  44. Xu, Q., Chen, Y., Wang, B., & Liu, K. R. (2017). Radio biometrics: Human recognition through a wall. IEEE Transactions on Information Forensics and Security, 12(5), 1141–1155.

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 61801162) and Natural Science Foundation of Anhui Province (Grant No. 2008085MF214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lei, Y., Zhang, Y. et al. A robust indoor localization method with calibration strategy based on joint distribution adaptation. Wireless Netw 27, 1739–1753 (2021). https://doi.org/10.1007/s11276-020-02483-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02483-0

Keywords

Navigation