Skip to main content
Log in

A CPW-fed wearable antenna at ISM band for biomedical and WBAN applications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, a Mercedes-Benz logo antenna with a metal plate located at an optimized distance from the proposed antenna is introduced as a wearable antenna to operate in the industrial, scientific, and medical band with center frequency of 2.45 GHz. The metal plate is integrated with the antenna as an isolator and a reflector to improve the radiation performance of the proposed design, reduce the back radiation and reduce the specific absorption rate, when loaded on the human body. The front-to-back ratio improves by 18.2 dB, by adding a metal plate to the structure. The proposed antenna with coplanar waveguide-fed with dimensions of 35 mm × 35 mm × 0.508 mm is printed on a Rogers 4003C substrate, and has an impedance bandwidth from 2.20 to 2.56 GHz, the gain of 7.3 dBi at 2.45 GHz, and SAR levels is less than the criteria set by the FCC and ICNIRP. Nowadays, attention to health as product quality assurance factor along with other technical specifications is the requirements of industrial productions, especially in competition with superior brands. Based on comparisons made with similar works, the proposed wearable antenna structure can be used for wireless body area network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nishida, Y., Sasaki, K., Yamamoto, K., et al. (2019). Equivalent circuit model viewed from receiver side in human body communication. IEEE Transactions on Biomedical Circuits and Systems, 13(4), 746–755.

    Google Scholar 

  2. Saied, I. M., Chandran, S., & Arslan, T. (2019). Integrated flexible hybrid silicone-textile dual-resonant sensors and switching circuit for wearable neurodegeneration monitoring systems. IEEE Transactions on Biomedical Circuits and Systems, 13(6), 1304–1312.

    Google Scholar 

  3. El Atrash, M., Abdalla, M. A., & Elhennawy, H. M. (2019). A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications. IEEE Transactions on Antennas and Propagation, 67(10), 6378–6388.

    Google Scholar 

  4. Tiwari, R. N., Singh, P., & Kanaujia, B. K. (2018). Asymmetric U-shaped printed monopole antenna embedded with T-shaped strip for bluetooth, WLAN/WiMAX applications. Wireless Network, 26, 51–61.

    Google Scholar 

  5. Fahimi, D., Mahdavipour, O., Sabino, J., et al. (2019). Vertically-stacked MEMS pm2. Sensor for wearable applications. Sensors Actuators A: Physical, 299, 111569.

    Google Scholar 

  6. Kiani, S., Rezaei, P., Navaei, M., et al. (2018). Microwave sensor for detection of solid material permittivity in single/multilayer samples with high quality factor. IEEE Sensors Journal, 18(24), 9971–9977.

    Google Scholar 

  7. Karami, M., Rezaei, P., Kiani, S., et al. (2017). Modified planar sensor for measuring dielectric constant of liquid materials. Electronics Letters, 53(19), 1300–1302.

    Google Scholar 

  8. Paracha, K. N., Abdul Rahim, S. K., Soh, P. J., et al. (2019). Wearable antennas: a review of materials, structures, and innovative features for autonomous communication and sensing. IEEE Access, 7, 56694–56712.

    Google Scholar 

  9. Dhasarathan, V., Sharma, M., Kapil, M., et al. (2020). Integrated bluetooth/LTE2600 superwideband monopole antenna with triple notched (WiMAX/WLAN/DSS) band characteristics for UWB/X/Ku band wireless network applications. Wireless Network, 26, 2845–2855.

    Google Scholar 

  10. Kiani, S., Rezaei, P., Karami, M., et al. (2019). Band-stop filter sensor based on SIW cavity for the non-invasive measuring of blood glucose. IET Wireless Sensor Systems, 9(1), 1–5.

    Google Scholar 

  11. Kiani, S., Rezaei, P., & Navaei, M. (2020). Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection. Measurement, 160, 107805.

    Google Scholar 

  12. Yan, S., Soh, P. J., & Vandenbosch, G. A. E. (2018). Wearable ultrawideband technology—A review of ultrawideband antennas, propagation channels, and applications in wireless body area networks. IEEE Access, 6, 42177–42185.

    Google Scholar 

  13. Roy, S., & Chakraborty, U. (2019). Metamaterial based dual wideband wearable antenna for wireless applications. Wireless Personals Communications, 106(3), 1117–1133.

    Google Scholar 

  14. Bhattacharjee, S., Maity, S., Chaudhuri, S. R. B., et al. (2019). A compact dual-band dual-polarized omnidirectional antenna for on-body applications. IEEE Transactions on Antennas and Propagation, 67(8), 5044–5053.

    Google Scholar 

  15. Mao, C., Vital, D., Werner, D. H., et al. (2020). Dual-polarized embroidered textile armband antenna array with omni-directional radiation for on-/off-body wearable applications. IEEE Transactions on Antennas and Propagation, 68(4), 2575–2584.

    Google Scholar 

  16. Mendes, C., & Peixeiro, C. (2018). On-body transmission performance of a novel dual-mode wearable microstrip antenna. IEEE Transactions on Antennas and Propagation, 66(9), 4872–4877.

    Google Scholar 

  17. Simorangkir, R. B. V. B., Kiourti, A., & Esselle, K. P. (2018). UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric. IEEE Antennas Wireless Propagation Letters, 17(3), 493–496.

    Google Scholar 

  18. Blanco, D., & Rajo-Iglesias, E. (2018). Wearable Fabry-Pérot antenna. IEEE Antennas Wireless Propagation Letters, 17(1), 106–109.

    Google Scholar 

  19. Ullah, U., Mabrouk, I. B., & Koziel, S. (2019). A compact circularly polarized antenna with directional pattern for wearable off-body communications. IEEE Antennas and Wireless Propagation Letters, 18(12), 2523–2527.

    Google Scholar 

  20. Mokhtari-Koushyar, F., Grubb, P. M., Chen, M. Y., et al. (2019). A miniaturized tree-shaped fractal antenna printed on a flexible substrate: a lightweight and low-profile candidate with a small footprint for spaceborne and wearable applications. IEEE Antennas Propagation Magazine, 61(3), 60–66.

    Google Scholar 

  21. Faisal, F., Amin, Y., Cho, Y., et al. (2019). Compact and flexible novel wideband flower-shaped CPW-fed antennas for high data wireless applications. IEEE Transactions on Antennas and Propagation, 67(6), 4184–4188.

    Google Scholar 

  22. Ullah, S., Ahmad, S., Khan, B. A., et al. (2019). An hp-shape hexa-band antenna for multi-standard wireless communication systems. Wireless Network, 25(3), 1361–1369.

    Google Scholar 

  23. Kiani, S., Rezaei, P., Karami, M., et al. (2018). Substrate integrated waveguide quasi-elliptic bandpass filter with parallel coupled microstrip resonator. Electronics Letters, 54(10), 667–668.

    Google Scholar 

  24. Farzami, F., Khaledian, S., Smida, B., et al. (2018). Reconfigurable linear/circular polarization rectangular waveguide filtenna. IEEE Transactions on Antennas and Propagation, 66(1), 9–15.

    Google Scholar 

  25. Mohamadzade, B., Hashmi, R. M., Simorangkir, R. B. V. B., et al. (2019). Recent advances in fabrication methods for flexible antennas in wearable devices: State of the art. Sensors, 19(10), 2312–2333.

    Google Scholar 

  26. Ramadan, M., & Dahle, R. (2019). Characterization of 3-D printed flexible heterogeneous substrate designs for wearable antennas. IEEE Transactions on Antennas and Propagation, 67(5), 2896–2903.

    Google Scholar 

  27. Li, Y. J., Lu, Z. Y., & Yang, L. S. (2019). CPW-fed slot antenna for medical wearable applications. IEEE Access, 7, 42107–42112.

    Google Scholar 

  28. Chandravanshi, S., Sarma, S. S., & Akhtar, M. J. (2018). Design of triple band differential rectenna for RF energy harvesting. IEEE Transactions on Antennas and Propagation, 66(6), 2716–2726.

    Google Scholar 

  29. Lee, C., Sainati, R., & Franklin, R. R. (2018). Frequency selective surface effects on a coplanar waveguide feedline in Fabry-Perot cavity antenna systems. IEEE Antennas Wireless Propagation Letters, 17(5), 768–771.

    Google Scholar 

  30. Saeed, M., Balanis, C. A., Birtcher, C. R., et al. (2017). Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor. IEEE Antennas Wireless Propagation Letters, 16, 2396–2399.

    Google Scholar 

  31. Haerinia, M., & Noghanian, S. (2019). A printed wearable dual-band antenna for wireless power transfer. Sensors, 19(7), 1732–1742.

    Google Scholar 

  32. Ketavath, K. N., Gopi, D., & Sandhya Rani, S. (2019). In-vitro test of miniaturized CPW-fed implantable conformal patch antenna at ISM band for biomedical applications. IEEE Access, 7, 43547–43554.

    Google Scholar 

  33. Ashyap, A. Y. I., Abidin, Z. Z., Dahlan, S. H., et al. (2017). Compact and low-profile textile EBG-based antenna for wearable medical applications. IEEE Antennas Wireless Propagation Letters, 16, 2550–2553.

    Google Scholar 

  34. Arif, A., Zubair, M., Ali, M., et al. (2019). A compact, low-profile fractal antenna for wearable on-body WBAN applications. IEEE Antennas Wireless Propagation Letters, 18(5), 981–985.

    Google Scholar 

  35. Paracha, K. N., Rahim, S. K. A., Soh, P. J., et al. (2019). A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application. IEEE Access, 7, 33277–33288.

    Google Scholar 

  36. Ashyap, A. Y. I., Abidin, Z. Z., Dahlan, S. H., et al. (2018). Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications. IEEE Access, 6, 77529–77541.

    Google Scholar 

  37. Ashyap, A. Y. I., Abidin, Z. Z., & Dahlan, S. H. (2018). Inverted E-shaped wearable textile antenna for medical applications. IEEE Access, 6, 35214–35222.

    Google Scholar 

  38. Ashyap, A. Y. I., Abidin, Z. Z., Dahlan, S. H., et al. (2019). Metamaterial inspired fabric antenna for wearable applications. International Journal RF and Microwave Computer-Aided Engineering, 29(3), e21640.

    Google Scholar 

  39. Gao, G.-P., Hu, B., Wang, S.-F., et al. (2018). Wearable circular ring slot antenna with EBG structure for wireless body area network. IEEE Antennas Wireless Propagation Letters, 17(3), 434–437.

    Google Scholar 

  40. Abirami, B. S., & Sundarsingh, E. F. (2017). EBG-backed flexible printed Yagi-Uda antenna for on-body communication. IEEE Transactions on Antennas and Propagation, 65(7), 3762–3765.

    Google Scholar 

  41. Jiang, Z. H., Cui, Z., Yue, T., et al. (2017). Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks. IEEE Transactions on Biomedical Circuits and Systems, 11(4), 920–932.

    Google Scholar 

  42. Zhu, X., Guo, Y., & Wu, W. (2016). A compact dual-band antenna for wireless body-area network applications. IEEE Antennas Wireless Propagation Letters, 15, 98–101.

    Google Scholar 

  43. Wu, J., & Sarabandi, K. (2017). Compact omnidirectional circularly polarized antenna. IEEE Transactions on Antennas and Propagation, 65(4), 1550–1557.

    MathSciNet  MATH  Google Scholar 

  44. Abbasi, M. A. B., Nikolaou, S. S., Antoniades, M. A., et al. (2017). Compact EBG-backed planar monopole for BAN wearable applications,". IEEE Transactions on Antennas and Propagation, 65(2), 453–463.

    Google Scholar 

  45. Sanusi, O. M., Ghaffar, F. A., Shamim, A., et al. (2019). Development of a 2.45 GHz antenna for flexible compact radiation dosimeter tags. IEEE Transactions Antennas Propagation, 67(8), 5063–5072.

    Google Scholar 

  46. Wang, M., Yang, Z., Wu, J., et al. (2018). Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network. IEEE Transactions on Antennas and Propagation, 66(6), 3076–3086.

    Google Scholar 

  47. Masrakin, K., Rahim, H. A., Soh, P. J., et al. (2019). Assessment of worn textile antennas’ exposure on the physiological parameters and well-being of adults. IEEE Access, 7, 98946–98958.

    Google Scholar 

  48. Yan, S., & Vandenbosch, G. A. E. (2018). Design of wideband button antenna based on characteristic mode theory. IEEE Transactions on Biomedical Circuits and Systems, 12(6), 1383–1391.

    Google Scholar 

  49. Smida, A., Iqbal, A., Alazemi, A., et al. (2020). Wideband wearable antenna for biomedical telemetry applications. IEEE Access, 8, 15687–15694.

    Google Scholar 

  50. Punj, R., & Kumar, R. (2019). Technological aspects of WBANs for health monitoring: a comprehensive review. Wireless Network, 25(3), 1125–1157.

    Google Scholar 

  51. Moghaddam, M., Iyer, A. K., et al. (2020). Remembering prof. mojgan daneshmand and prof. pedram mousavi [in memoriam]. IEEE Transactions Antennas Propagation Magazine, 62(2), 124–125.

    Google Scholar 

Download references

Acknowledgments

Authors must first mention two eminent professors of telecommunications (Professor Mojgan Daneshmand and Professor Pedram Mousavi) who are no longer with us; and we are very grateful for their achievements and scientific services [51]. Also the authors appreciate the Semnan University and the members of antenna laboratory at Iran Telecommunication Research Center (ITRC) which supported and accompanied us in conducting research and experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Kiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, S., Rezaei, P. & Fakhr, M. A CPW-fed wearable antenna at ISM band for biomedical and WBAN applications. Wireless Netw 27, 735–745 (2021). https://doi.org/10.1007/s11276-020-02490-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02490-1

Keywords

Navigation