Skip to main content
Log in

LAPTAS: lightweight anonymous privacy-preserving three-factor authentication scheme for WSN-based IIoT

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Nowadays, wireless sensor networks (WSNs) are essential for monitoring and data collection in many industrial environments. Industrial environments are usually huge. The distances between the devices located in them can be vast; in this case, the Industrial Internet of Things (IIoT) leads to greater productivity and efficiency of industries. Furthermore, the sensor devices in IIoT have limited memory and constrained processing power, and using gateway nodes is inevitable to cover these vast areas and manage communications between industrial sensors. Security threats such as compromised devices, denial of service, and leakage of confidential information can incur hefty expenses and irreparable damage to industrial systems. Hence, in the IIoT hierarchical architecture, anonymous and mutual authentication between users, gateway nodes, and sensor nodes is essential to protect users and the system’s security and privacy. In this article, we propose a lightweight anonymous privacy-preserving three-factor authentication scheme for WSN-Based IIoT (LAPTAS). In LAPTAS, registered users can use their security smartcard to communicate with sensors and access their data. Moreover, the proposed scheme supports sensor node dynamic registration, password and biometric change, and revocation phase. Additionally, we evaluate and verify our scheme’s security formally using the Real-or-Random model and informally with the automatic cryptographic Protocol Verifier tool(ProVerif). Finally, our scheme is simulated by the OPNET network simulator and compared with other similar schemes to ensure that the LAPTAS meets all security and performance requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010, URL https://linkinghub.elsevier.com/retrieve/pii/S1389128610001568.

  2. Al-Turjman, F., & Alturjman, S. (2018). Context-Sensitive Access in Industrial Internet of Things (IIoT) Healthcare Applications. IEEE Transactions on Industrial Informatics, 14(6), 2736–2744. https://doi.org/10.1109/TII.2018.2808190, URL https://ieeexplore.ieee.org/document/8295246/.

  3. Ketshabetswe, L. K., Zungeru, A. M., Mangwala, M., Chuma, J. M., & Sigweni, B. (2019). Communication protocols for wireless sensor networks: A survey and comparison. Heliyon, 5(5), e01591. https://doi.org/10.1016/j.heliyon.2019.e01591, URL https://www.sciencedirect.com/science/article/pii/S2405844018340192#bib3.

  4. Ibrahim, A. (2007). Wireless sensor networks: technology, protocols, and applications. PhD thesis, https://doi.org/10.5860/choice.45-1482, URL https://books.google.fr/books?hl=fa&lr=&id=I3bJGo690SUC&oi=fnd&pg=PR5&ots=omTr2SRsPo&sig=si30JEvL0lVXambHoMp6jWFWvpY&redir_esc=y#v=onepage&q&f=false

  5. Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349. https://doi.org/10.1016/j.adhoc.2003.09.010, URL https://www.sciencedirect.com/science/article/abs/pii/S1570870503000738.

  6. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422. https://doi.org/10.1016/S1389-1286(01)00302-4, URL https://www.sciencedirect.com/science/article/abs/pii/S1389128601003024.

  7. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670. https://doi.org/10.1109/TWC.2002.804190.

    Article  Google Scholar 

  8. Wang, Z. (2018). A privacy-preserving and accountable authentication protocol for IoT end-devices with weaker identity. Future Generation Computer Systems, 82, 342–348. https://doi.org/10.1016/j.future.2017.09.042, URL http://linkinghub.elsevier.com/retrieve/pii/S0167739X17307495.

  9. Shen, J. J., Chang, S., Shen, J. J., Liu, Q., & Sun, X. (2018). A lightweight multi-layer authentication protocol for wireless body area networks. Future Generation Computer Systems, 78, 956–963. https://doi.org/10.1016/j.future.2016.11.033.

    Article  Google Scholar 

  10. Ferrag, M.A., Maglaras, L.A., Janicke, H., Jiang, J., & Shu, L. (2017). Authentication Protocols for Internet of Things: A Comprehensive Survey. Security and Communication Networks 2017:1–41, https://doi.org/10.1155/2017/6562953, URL https://www.hindawi.com/journals/scn/2017/6562953/, arXiv:1612.07206.

  11. Esch, J. (2003). Comparing passwords, tokens, and biometrics for user authentication. Proceedings of the IEEE, 91(12), 2019–2020. https://doi.org/10.1109/JPROC.2003.819605.

    Article  Google Scholar 

  12. Barkadehi, M. H., Nilashi, M., Ibrahim, O., Zakeri Fardi, A., & Samad, S. (2018). Authentication systems: A literature review and classification. Telematics and Informatics, 35(5), 1491–1511. https://doi.org/10.1016/j.tele.2018.03.018.

    Article  Google Scholar 

  13. Srinivas J, Das AK, Wazid M, Kumar N (2018) Anonymous Lightweight Chaotic Map-Based Authenticated Key Agreement Protocol for Industrial Internet of Things. IEEE Transactions on Dependable and Secure Computing PP(c):1, https://doi.org/10.1109/TDSC.2018.2857811

  14. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Article  Google Scholar 

  15. Lamport, L. (1981). Password authentication with insecure communication. Communications of the ACM, 24(11), 770–772. https://doi.org/10.1145/358790.358797.

    Article  MathSciNet  Google Scholar 

  16. Das, M. L. (2009). Two-factor user authentication in wireless sensor networks. IEEE Transactions on Wireless Communications, 8(3), 1086–1090. https://doi.org/10.1109/TWC.2008.080128.

    Article  Google Scholar 

  17. Khan, M. K., & Alghathbar, K. (2010). Cryptanalysis and security improvements of ’two-factor user authentication in wireless sensor networks’. Sensors, 10(3), 2450–2459. https://doi.org/10.3390/s100302450.

    Article  Google Scholar 

  18. He, D., Gao, Y., Chan, S., Chen, C., & Bu, J. (2010). An enhanced two-factor user authentication scheme in wireless sensor networks. Ad-Hoc and Sensor Wireless Networks, 10(4), 361–371.

    Google Scholar 

  19. Yeh, H. L., Chen, T. H., Liu, P. C., Kim, T. H., & Wei, H. W. (2011). A secured authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors, 11(5), 4767–4779. https://doi.org/10.3390/s110504767.

    Article  Google Scholar 

  20. Shi, W., & Gong, P. (2013). A new user authentication protocol for wireless sensor networks using elliptic curves cryptography. International Journal of Distributed Sensor Networks, 9, 730831. https://doi.org/10.1155/2013/730831.

    Article  Google Scholar 

  21. Choi, Y., Lee, D., Kim, J., Jung, J., Nam, J., & Won, D. (2014). Security enhanced user authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors (Switzerland), 14(6), 10081–10106. https://doi.org/10.3390/s140610081.

    Article  Google Scholar 

  22. Xue, K., Ma, C., Hong, P., & Ding, R. (2013). A temporal-credential-based mutual authentication and key agreement scheme for wireless sensor networks. Journal of Network and Computer Applications, 36(1), 316–323.

    Article  Google Scholar 

  23. He, D., Kumar, N., & Chilamkurti, N. (2015). A secure temporal-credential-based mutual authentication and key agreement scheme with pseudo identity for wireless sensor networks. Information Sciences, 321, 263–277. https://doi.org/10.1016/j.ins.2015.02.010.

    Article  Google Scholar 

  24. Jiang, Q., Ma, J., Wei, F., Tian, Y., Shen, J., & Yang, Y. (2016). An untraceable temporal-credential-based two-factor authentication scheme using ECC for wireless sensor networks. Journal of Network and Computer Applications, 76, 37–48. https://doi.org/10.1016/j.jnca.2016.10.001, URL https://www.sciencedirect.com/science/article/pii/S1084804516302302?via%3Dihub.

  25. Li, X., Niu, J., Bhuiyan, M. Z. A., Wu, F., Karuppiah, M., & Kumari, S. (2018a). A robust ECC-Based provable secure authentication protocol with privacy preserving for industrial internet of things. IEEE Transactions on Industrial Informatics, 14(8), 3599–3609. https://doi.org/10.1109/TII.2017.2773666, URL https://ieeexplore.ieee.org/abstract/document/8110708.

  26. Li, X., Niu, J., Kumari, S., Wu, F., Sangaiah, A. K., & Choo, K. K. R. (2018b). A three-factor anonymous authentication scheme for wireless sensor networks in internet of things environments. Journal of Network and Computer Applications, 103, 194–204. https://doi.org/10.1016/j.jnca.2017.07.001.

    Article  Google Scholar 

  27. Das, A. K., Wazid, M., Kumar, N., Vasilakos, A. V., & Rodrigues, J. J. P. C. (2018). Biometrics-Based Privacy-Preserving User Authentication Scheme for Cloud-Based Industrial Internet of Things Deployment. IEEE Internet of Things Journal, 5(6), 4900–4913. https://doi.org/10.1109/JIOT.2018.2877690, URL https://ieeexplore.ieee.org/document/8506419/.

  28. Wang, F., Xu, G., & Xu, G. (2019). A provably secure anonymous biometrics-based authentication scheme for wireless sensor networks using chaotic map. IEEE Access, 7, 101596–101608. https://doi.org/10.1109/access.2019.2930542.

    Article  Google Scholar 

  29. Kumar, D., Singh, H. K., & Ahlawat, C. (2020). A secure three-factor authentication scheme for wireless sensor networks using ECC. Journal of Discrete Mathematical Sciences and Cryptography, 23(4), 879–900. https://doi.org/10.1080/09720529.2019.1627072, URL https://www.tandfonline.com/doi/full/10.1080/09720529.2019.1627072.

  30. Vinoth, R., Deborah, L.J., Vijayakumar, P., & Kumar, N. (2020). Secure Multi-factor Authenticated Key Agreement Scheme for Industrial IoT. IEEE Internet of Things Journal XX(X):1–10, https://doi.org/10.1109/JIOT.2020.3024703, URL https://ieeexplore.ieee.org/document/9199812/.

  31. Schwab, K. (2017). The fourth industrial revolution (First U.S. edition). Crown Business.

  32. Meng, Z., Wu, Z., Muvianto, C., & Gray, J. (2016). A data-oriented m2m messaging mechanism for industrial iot applications. IEEE Internet of Things Journal, 4(1), 236–246.

    Article  Google Scholar 

  33. Alshahrani, M., & Traore, I. (2019). Secure mutual authentication and automated access control for IoT smart home using cumulative Keyed-hash chain. Journal of Information Security and Applications, 45, 156–175. https://doi.org/10.1016/j.jisa.2019.02.003.

    Article  Google Scholar 

  34. Fotouhi, M., Bayat, M., Das, A. K., Far, H. A. N., Pournaghi, S. M., & Doostari, M. A. (2020). A lightweight and secure two-factor authentication scheme for wireless body area networks in health-care IoT. Computer Networks, 177, 107333. https://doi.org/10.1016/j.comnet.2020.107333.

    Article  Google Scholar 

  35. Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on information theory, 29(2), 198–208.

    Article  MathSciNet  Google Scholar 

  36. Wazid, M., Das, A.K., Odelu, V., Kumar, N., & Susilo, W. (2017). Secure Remote User Authenticated Key Establishment Protocol for Smart Home Environment. IEEE Transactions on Dependable and Secure Computing, https://doi.org/10.1109/TDSC.2017.2764083, URL http://ieeexplore.ieee.org/document/8070995/.

  37. Dodis, Y., Ostrovsky, R., Reyzin, L., & Smith, A. (2008). Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38(1), 97–139. https://doi.org/10.1137/060651380.

    Article  MathSciNet  MATH  Google Scholar 

  38. Carper, T., & Hemmo, D. (2002). Smart card memory management system and method. US Patent 6,480,935

  39. Hamann, E.M., & Kaisser, M. (2001). Storing data objects in a smart card memory. US Patent 6,296,191.

  40. Abdalla, M., Fouque, P. A., & Pointcheval, D. (2006). Password-based authenticated key exchange in the three-party setting. IEE Proceedings: Information Security, 153(1), 27–39. https://doi.org/10.1049/ip-ifs:20055073, URL http://link.springer.com/10.1007/978-3-540-30580-4_6.

  41. Srinivas, J., Das, A. K., Kumar, N., & Rodrigues, J. J. P. C. (2019). TCALAS: Temporal credential-based anonymous lightweight authentication scheme for internet of drones environment. IEEE Transactions on Vehicular Technology, 68(7), 6903–6916. https://doi.org/10.1109/TVT.2019.2911672.

    Article  Google Scholar 

  42. Wazid, M., Das, A. K., Odelu, V., Kumar, N., & Susilo, W. (2017). Secure remote user authenticated key establishment protocol for smart home environment. IEEE Transactions on Dependable and Secure Computing,. https://doi.org/10.1109/TDSC.2017.2764083.

    Article  Google Scholar 

  43. Wazid, M., Das, A. K., Kumar, N., Vasilakos, A. V., & Rodrigues, J. J. P. C. (2019). Design and analysis of secure lightweight remote user authentication and key agreement scheme in internet of drones deployment. IEEE Internet of Things Journal, 6(2), 3572–3584.

    Article  Google Scholar 

  44. Odelu, V., Das, A. K., & Goswami, A. (2015). A secure biometrics-based multi-server authentication protocol using smart cards. IEEE Transactions on Information Forensics and Security, 10(9), 1953–1966.

    Article  Google Scholar 

  45. Safkhani, M., Bagheri, N., Kumari, S., Tavakoli, H., Kumar, S., & Chen, J. (2020). RESEAP: An ECC based authentication and key agreement scheme for IoT applications. IEEE Access, https://doi.org/10.1109/access.2020.3034447.

  46. Kocher, P., Jaffe, J., & Jun, B. (1999). Differential power analysis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1666, 388–397. https://doi.org/10.1007/3-540-48405-1_25.

    Article  MATH  Google Scholar 

  47. Messerges, T. S., Dabbish, E. A., & Sloan, R. H. (2002). Examining smart-card security under the threat of power analysis attacks. IEEE Transactions on Computers, 51(5), 541–552. https://doi.org/10.1109/TC.2002.1004593.

    Article  MathSciNet  MATH  Google Scholar 

  48. Daynes, L.P., & Czajkowski, G.J. (2007). Multi-level undo of main-memory and volatile resources. US Patent 7,234,076.

  49. Huang, X., Xiang, Y., Chonka, A., Zhou, J., & Deng, R. H. (2011). A generic framework for three-factor authentication: Preserving security and privacy in distributed systems. IEEE Transactions on Parallel and Distributed Systems, 22(8), 1390–1397. https://doi.org/10.1109/TPDS.2010.206, URL http://doi.ieeecomputersociety.org/10.1109/.

  50. Blanchet, B. (2016). Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif. Foundations and Trends® in Privacy and Security, 1(1–2), 1–135. https://doi.org/10.1561/3300000004.

    Article  Google Scholar 

  51. Blanchet, B. (2014). Automatic verification of security protocols in the symbolic model: The verifier proverif. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (pp. 54–87). Cham: Springer.

    Google Scholar 

  52. Cheval, V., & Blanchet, B. (2013). Proving more observational equivalences with proverif. in: International conference on principles of security and trust (pp. 226–246). Cham: Springer.

    MATH  Google Scholar 

  53. Abdi, H. (2019). hossein73/proverif. URL https://github.com/hossein73/proverif/blob/develop/LAPTASAuthenticationSchemeWithPrivacyPreservingIIoT.pv.

  54. Lee, H., Kang, D., Ryu, J., Won, D., Kim, H., & Lee, Y. (2020). A three-factor anonymous user authentication scheme for Internet of Things environments. Journal of Information Security and Applications, 52, 102494. https://doi.org/10.1016/j.jisa.2020.102494.

    Article  Google Scholar 

  55. Dai, W. (2019, April 28). Weidai11/cryptopp. Crypto++ Library is a free C++ class library of cryptographic schemes. https://github.com/weidai11/cryptopp

  56. Dang, Q.H. (2015). Secure Hash Standard. Tech. rep., National Institute of Standards and Technology, Gaithersburg, MD, https://doi.org/10.6028/NIST.FIPS.180-4, URL https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

  57. Challa, S., Das, A. K., Odelu, V., Kumar, N., Kumari, S., Khan, M. K., et al. (2018). An efficient ECC-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks. Computers and Electrical Engineering, 69, 534–554. https://doi.org/10.1016/j.compeleceng.2017.08.003.

    Article  Google Scholar 

  58. Rivest, R. L., Hellman, M. E., Anderson, J. C., & Lyons, J. W. (1992). Responses to NIST’s proposal. Communications of the ACM, 35(7), 41–54. https://doi.org/10.1145/129902.129905.

    Article  Google Scholar 

  59. Zhu, C., Yang, O. W., Aweya, J., Ouellette, M., & Montuno, D. Y. (2002). A comparison of active queue management algorithms using the opnet modeler. IEEE Communications Magazine, 40(6), 158–167.

    Article  Google Scholar 

  60. Cao, C., Zuo, Y., & Zhang, F. (2018). Research on comprehensive performance simulation of communication ip network based on opnet. In: 2018 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), IEEE, pp 195–197.

  61. Salah, K., Calyam, P., & Buhari, M. (2008). Assessing readiness of ip networks to support desktop videoconferencing using opnet. Journal of Network and Computer Applications, 31(4), 921–943.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Doostari.

Ethics declarations

Conflict of interest

The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi Nasib Far, H., Bayat, M., Kumar Das, A. et al. LAPTAS: lightweight anonymous privacy-preserving three-factor authentication scheme for WSN-based IIoT. Wireless Netw 27, 1389–1412 (2021). https://doi.org/10.1007/s11276-020-02523-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02523-9

Keywords

Navigation