Skip to main content
Log in

Enhancing the isolation between the strips of dipoles antenna at terahertz frequency with cuboid-shaped graphene layer

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, the concept of mantle cloaking method uses to enhance the isolation between the two electrically close dipole antenna at low-terahertz (THz) frequencies, two strips of dipole antenna resonating at two different frequencies (2.05 THz and 2.65 THz), and separation between the dipoles antenna is \(0.08{\mathbf{\lambda }}\). We show the reduction of mutual coupling made by wrapping each dipole antenna with a thin graphene monolayer cuboid-shaped structure. The inherent graphene property provides the tuning of surface impedance, leading to the restoration of the matching condition and the antenna radiation pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Armstrong, C. M. (2012). The truth about terahertz. IEEE Spectrum, 49, 36–1. https://doi.org/10.1109/MSPEC.2012.6281131

    Article  Google Scholar 

  2. Saptarshi, G., & Kumar, V. S. (2017). Polarization-insensitive single-/dual-band tunable absorber with independent tuning in wide frequency range. IEEE Transactions on Antennas and Propagation, 65, 4903–4908. https://doi.org/10.1109/TAP.2017.2731381

    Article  Google Scholar 

  3. Alù, A., & Engheta, N. (2007). Cloaking and transparency for collections of particles with metamaterial and plasmonic covers. Optics Express, 15, 7578. https://doi.org/10.1364/OE.15.007578

    Article  Google Scholar 

  4. Sarieddeen, H., Alouini, M., & Al-Naffouri, T. Y. (2019). Terahertz-band ultra-massive spatial modulation MIMO. IEEE Journal on Selected Areas in Communications, 37(9), 2040–2052. https://doi.org/10.1109/JSAC.2019.2929455

    Article  Google Scholar 

  5. Alù, A., & Engheta, N. (2007). Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. Optics Express, 15, 3318. https://doi.org/10.1364/OE.15.003318

    Article  Google Scholar 

  6. Monti, A., Soric, J., Alù, A., Bilotti, F., Toscano, A., & Vegni, L. (2012). Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface. IEEE Antennas and Wireless Propagation Letters, 11, 1414–1417. https://doi.org/10.1109/LAWP.2012.2229102

    Article  Google Scholar 

  7. Correas-Serrano, D., Gomez-Diaz, J. S., Alu, A., & Alvarez-Melcon, A. (2015). Electrically and magnetically biased graphene-based cylindrical waveguides: Analysis and applications as reconFigurable antennas. IEEE Transactions on Terahertz Science and Technology, 99, 1–10. https://doi.org/10.1109/TTHZ.2015.2472985

    Article  Google Scholar 

  8. Bernety, H. M., & Yakovlev, A. B. (2015). Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks. IEEE Transactions on Antennas and Propagation, 63(4), 1554–1563. https://doi.org/10.1109/TAP.2015.2398121

    Article  MathSciNet  MATH  Google Scholar 

  9. Padooru, Y. R., Yakovlev, A. B., Chen, P. Y., et al. (2012). Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays. Journal of Applied Physics, 112(3), 034907–034919. https://doi.org/10.1063/1.4745888

    Article  Google Scholar 

  10. Emadi, R., Safian, R., & Nezhad, A. Z. (2018). Use of an epsilon-near-zero region comprised of a graphene strip-silica stack for designing cloaking and reflection devices. IEEE Sensors Journal, 18(5), 1887–1894. https://doi.org/10.1109/JSEN.2017.2788180

    Article  Google Scholar 

  11. Emadi, R., Safian, R., Nezhad, A. Z, & Barani, N. (2018). Robust multi-layer graphene-based plasmonic cloaking. In 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Boston, MA, pp. 145–146. https://doi.org/10.1109/USNC-URSI.2018.8602947.

  12. Rizza, C., & Matekovits, L. (2019). Numerical investigation on graphene based mantle cloaking of a PEC cylinder. In 2019 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting, Atlanta, GA, USA, 2019, pp. 1321–1322. https://doi.org/10.1109/APUSNCURSINRSM.2019.8888586.

  13. Hamzavi-Zarghani, Z., Yahaghi, A., & Matekovits, L. (2019). Dynamically tunable scattering manipulation of dielectric and conducting cylinders using nanostructured graphene metasurfaces. IEEE Access, 7, 15556–15562. https://doi.org/10.1109/ACCESS.2019.2894760

    Article  Google Scholar 

  14. Hamzavi-Zarghani, Z., Yahaghi, A., & Ladislau, M. (2020). Electrically tenable mantle cloaking utilizing graphene metasurface for oblique incidence. AEU - International Journal of Electronics and Communications, 116, 153080.

  15. Tripathi, S. K., Kumar, M., & Kumar, A. (2019). Graphene based tunable and wideband terahertz antenna for wireless network communication. Wireless Networks, 25, 4371–4381. https://doi.org/10.1007/s11276-019-02101-8

    Article  Google Scholar 

  16. Zhang, B., Jornet, J. M., Akyildiz, I. F., & Wu, Z. P. (2019). Mutual coupling reduction for ultra-dense multi-band plasmonic nano-antenna arrays using graphene-based frequency selective surface. IEEE Access, 7, 33214–33225. https://doi.org/10.1109/ACCESS.2019.2903493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Paras Enhancing the isolation between the strips of dipoles antenna at terahertz frequency with cuboid-shaped graphene layer. Wireless Netw 27, 3895–3902 (2021). https://doi.org/10.1007/s11276-021-02684-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02684-1

Keywords

Navigation