Skip to main content
Log in

Sparse channel estimation for OFDM based on IOMP algorithm under unknown sparsity

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Compressive sensing (CS) based channel estimation (CE) improves the utilization of spectrum resources effectively in orthogonal frequency division multiplexing (OFDM) system. Generally, the channel sparsity is assumed to be known in sparse reconstruction algorithms such as Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). However, since the uncertainty of the environment, the channel sparsity is usually tricky to obtain. This paper proposes an improved OMP algorithm based on intersect operation (IOMP), which does not need a priori knowledge of channel sparsity. Initially, we use the OMP algorithm twice to estimate two different partial sparse delay path supports at partially different pilot positions, respectively. Then introduce the intersect operation to process these two partial supports. Besides, we discussed an optimized pilot allocation scheme based on discrete stochastic approximation and Iterative Exhaustive Search, both of which are employed to build the framework of CS-based channel estimation. Simulation results demonstrate that the proposed IOMP algorithm provides a better bit error ratio (BER) performance than the traditional OMP algorithm under unknown channel sparsity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bajwa, W. U., Haupt, J., Sayeed, A. M., & Nowak, R. (2010). Compressed channel sensing: A new approach to estimating sparse multipath channels. Proceedings of the IEEE, 98(6), 1058–1076.

    Article  Google Scholar 

  2. Berger, C. R., Wang, Z., Huang, J., & Zhou, S. (2010). Application of compressive sensing to sparse channel estimation. IEEE Communications Magazine, 48(11), 164–174.

    Article  Google Scholar 

  3. Candès, E. J., & Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  4. Chen, J. C., Wen, C. K., & Ting, P. (2013). An efficient pilot design scheme for sparse channel estimation in OFDM systems. IEEE Communications Letters, 17(7), 1352–1355.

    Article  Google Scholar 

  5. Choi, J. W., Shim, B., Ding, Y., Rao, B., & Kim, D. I. (2017). Compressed sensing for wireless communications: Useful tips and tricks. IEEE Communications Surveys & Tutorials, 19(3), 1527–1550.

    Article  Google Scholar 

  6. Ding, W., Yang, F., Pan, C., Dai, L., & Song, J. (2014). Compressive sensing based channel estimation for OFDM systems under long delay channels. IEEE Transactions on Broadcasting, 60(2), 313–321.

    Article  Google Scholar 

  7. Do, T. T., Gan, L., Nguyen, N., & Tran, T. D. (2008). Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In 42nd Asilomar conference on signals, systems and computers(pp. 581–587). IEEE.

  8. Donoho, D. L., & Huo, X. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47(7), 2845–2862.

    Article  MathSciNet  Google Scholar 

  9. Gao, Z., Dai, L., Han, S., Chih-Lin, I., Wang, Z., & Hanzo, L. (2018). Compressive sensing techniques for next-generation wireless communications. IEEE Wireless Communications, 25(3), 144–153.

    Article  Google Scholar 

  10. Huang, Y., He, Y., Luo, Q., Shi, L., & Wu, Y. (2018). Channel estimation in MIMO–OFDM systems based on a new adaptive greedy algorithm. IEEE Wireless Communications Letters, 8(1), 29–32.

    Article  Google Scholar 

  11. Liu, Y., Tan, Z., Hu, H., Cimini, L. J., & Li, G. Y. (2014). Channel estimation for OFDM. IEEE Communications Surveys & Tutorials, 16(4), 1891–1908.

    Article  Google Scholar 

  12. Mohammadian, R., Amini, A., & Khalaj, B. H. (2016). Compressive sensing-based pilot design for sparse channel estimation in OFDM systems. IEEE Communications Letters, 21(1), 4–7.

    Article  Google Scholar 

  13. Needell, D., & Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 301–321.

    Article  MathSciNet  Google Scholar 

  14. Pakrooh, P., Amini, A., & Marvasti, F. (2012). OFDM pilot allocation for sparse channel estimation. EURASIP Journal on Advances in Signal Processing, 1, 1–9.

    Google Scholar 

  15. Qaisar, S., Bilal, R. M., Iqbal, W., Naureen, M., & Lee, S. (2013). Compressive sensing: From theory to applications, a survey. Journal of Communications and networks, 15(5), 443–456.

    Article  Google Scholar 

  16. Qi, C., & Wu, L. (2011). Optimized pilot placement for sparse channel estimation in OFDM systems. IEEE Signal Processing Letters, 18(12), 749–752.

    Article  Google Scholar 

  17. Qi, C., & Wu, L. (2012). A study of deterministic pilot allocation for sparse channel estimation in OFDM systems. IEEE Communications Letters, 16(5), 742–744.

    Article  Google Scholar 

  18. Renwang, S. H. S., & Gangfei, W. (2011). Study on sparse channel estimation algorithm based on compressive sensing for OFDM systems. In: 2011 IEEE 3rd International conference on communication software and networks (pp. 368–371). IEEE.

  19. Soussen, C., Gribonval, R., Idier, J., & Herzet, C. (2013). Joint k-step analysis of orthogonal matching pursuit and orthogonal least squares. IEEE Transactions on Information Theory, 59(5), 3158–3174.

    Article  MathSciNet  Google Scholar 

  20. Taubock, G., Hlawatsch, F., Eiwen, D., & Rauhut, H. (2010). Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing. IEEE Journal of Selected Topics in Signal Processing, 4(2), 255–271.

    Article  Google Scholar 

  21. Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.

    Article  MathSciNet  Google Scholar 

  22. Zhang, Y., Venkatesan, R., Dobre, O. A., & Li, C. (2015). Novel compressed sensing-based channel estimation algorithm and near-optimal pilot placement scheme. IEEE Transactions on Wireless Communications, 15(4), 2590–2603.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjian Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Liu, J., Zhu, J. et al. Sparse channel estimation for OFDM based on IOMP algorithm under unknown sparsity. Wireless Netw 27, 5029–5038 (2021). https://doi.org/10.1007/s11276-021-02788-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02788-8

Keywords

Navigation