Skip to main content

Advertisement

Log in

Testing Solar-MAODV energy efficient model on various modulation techniques in wireless sensor and optical networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) suffer from energy imbalance and short lifespan among the sensor nodes placed near sink node. To optimally resolve the problem of battery of sensor nodes (SNs), many researchers have found new harvesting methods from environment or other sources, such as: solar power, vibrational energy harvesting, and magnetic resonant coupling. In this paper, we have carried out the research using three-step method. In the first step, solar based modified adhoc on-demand distance vector (Solar-MAODV) is proposed which is an improved recharging method that uses energy harvesting and congestion free routing to extend network lifetime. Also, the proposed scheme is a widely adopted combination of data collection, recharging and load balancing. Therefore, in the second step, the proposed scheme is validated by comparing its performance with existing joint mobile energy replenishment and data gathering (J-MERDG) and joint energy replenishment and load balancing (J-ERLB) techniques. Finally, in the last step, Solar-MAODV is tested on various modulation schemes to find the best modulation scheme for long range wireless rechargeable sensor networks (WRSNs). The main aim of research work is to propose robust and efficient scheme for extending lifespan of sensor nodes and to find out best modulation scheme for WRSNs so that they can support long range transmissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wei, X., Wang, Z., & Dai, H. (2014). A critical review of wireless power transfer via strongly coupled magnetic resonances. Energies, 7(7), 4316–4341.

    Article  Google Scholar 

  2. Baghee, S., Chamanian, S., Ulusan, H., Zorlu, O., Uysal-Biyikoglu, E., & Kulah, H., (2014). Demonstration of energy-neutral operation on a WSN testbed using vibration energy harvesting, in Proceedings of the 20th European Wireless Conference (EW '14), 47–52.

  3. Buchli, B., Sutton, F., Beutel, J., & Thiele, L., (2014). Dynamic power management for long-term energy neutral operation of solar energy harvesting systems. in Proceedings of the 12th ACM Conference, 31–45.

  4. Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.

    Article  Google Scholar 

  5. Hester, J., Scott, T., & Sorber, J., (2014). Ekho: realistic and repeatable experimentation for tiny energy-harvesting sensors. in Proceedings of the 12th ACM Conference on Embedded Networked Sensor Systems (SenSys '14), 1–15.

  6. Park, J., & Clerckx, B. (2014). Joint wireless information and energy transfer in a K-user MIMO interference channel. IEEE Transactions on Wireless Communications, 13(10), 5781–5796.

    Article  Google Scholar 

  7. Peng, S., Wang, T., & Low, C. P. (2015). Energy neutral clustering for energy harvesting wireless sensors networks. Ad Hoc Networks, 28, 1–16.

    Article  Google Scholar 

  8. Cao, S., & Li, J. (2017). A survey on ambient energy sourcesand harvesting methods for structuralhealth monitoring applications. Advances in Mechanical Engineering, 9(4), 1–14.

    Article  Google Scholar 

  9. Angurala, M., Bamber, S. S., Bala, M., (2017). Evaluating performance of different modulation schemes on modified cooperative aodv. International Interdisciplinary Conference on Science Technology Engineering Management Pharmacy and Humanities, 1–5.

  10. Liu, X., Qiu, T., & Wang, T. (2019). Load-balanced data dissemination for wireless sensor networks: A nature-inspired approach. IEEE Internet of Things Journal, 6(6), 9256–9265.

    Article  Google Scholar 

  11. Chatterjee, P., Ghosh, S. C., & Das, N. (2017). Load balanced coverage with graded node deployment in wireless sensor networks. IEEE Transactions on Multi-Scale Computing Systems, 3(2), 100–112.

    Article  Google Scholar 

  12. Liao, Y., Qi, H., & Li, W. (2013). Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sensors Journal, 13(5), 1498–1506.

    Article  Google Scholar 

  13. Chen, C., Mukhopadhyay, S. C., Chuang, C., Liu, M., & Jiang, J. (2015). Efficient coverage and connectivity preservation with load balance for wireless sensor networks. IEEE Sensors Journal, 15(1), 48–62.

    Article  Google Scholar 

  14. Zhang, W., Wang, C., Xiao, F., Xiong, N., & Chang, J. (2019). Reliable storage system with priority filter and load balance collection model for large scale sensor networks. IEEE Access, 7, 184078–184089.

    Article  Google Scholar 

  15. Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.

    Article  Google Scholar 

  16. Edla, D. R., Lipare, A., Cheruku, R., & Kuppilli, V. (2017). An efficient load balancing of gateways using improved shuffled frog leaping algorithm and novel fitness function for WSNs. IEEE Sensors Journal, 17(20), 6724–6733.

    Article  Google Scholar 

  17. Li, X., Keegan, B., Mtenzi, F., Weise, T., & Tan, M. (2019). Energy-efficient load balancing ant based routing algorithm for wireless sensor networks. IEEE Access, 7, 113182–113196.

    Article  Google Scholar 

  18. Yigit, M., Boluk, P. S., & Gungor, V. C. (2019). A new efficient error control algorithm for wireless sensor networks in smart grid. Computer Standards & Interfaces, 63, 27–42.

    Article  Google Scholar 

  19. Elshrkawey, M., Elsherif, S. M., & Wahed, M. E. (2019). An enhancement approach for reducing the energy consumption in wireless sensor networks. Journal of King Saud University - Computer and Information Sciences, 30(2), 259–267.

    Article  Google Scholar 

  20. Naik, M. S., & Kumar, V. (2017). Modulation aware cluster size optimisation in wireless sensor networks. International Journal of Electronics, 104(7), 1161–1177.

    Article  Google Scholar 

  21. Shivaprakasha, K. S., Kulkarni, M., & Patkar, R. (2013). Performance analysis of energy efficient modulation and coding schemes for wireless sensor networks. International Journal of Parallel, Emergent and Distributed Systems, 28(6), 576–589.

    Article  Google Scholar 

  22. Anane, R., Raoof, K., & Bouallegue, R. (2016). Minimization of wireless sensor network energy consumption through optimal modulation scheme and channel coding strategy. Journal of Signal Processing System, 83, 65–81.

    Article  Google Scholar 

  23. Gumusalan, A., Simon, R., & Aydin, H. (2020). Dynamic modulation scaling enabled multi-hop topology control for time critical wireless sensor networks. Wireless Networks, 26, 1203–1226.

    Article  Google Scholar 

  24. Abouei, J., Plataniotis, K. N., & Pasupathy, S. (2011). Green modulations in energy-constrained wireless sensor networks. IET Communications, 5(2), 240–251.

    Article  MathSciNet  Google Scholar 

  25. Angurala, M., Bala, M., & Bamber, S. S. (2020). Performance analysis of modified AODV routing protocol with lifetime extension of wireless sensor networks. IEEE Access, 8, 10606–10613.

    Article  Google Scholar 

  26. Kabir, A., Hassan, M., Hossain, N., Paul, B. K., & Ahmed, K. (2020). Design and performance evaluation of photonic crystal fibers of supporting orbital angular momentum states in optical transmission. Optics Communications, 467, 125731.

    Article  Google Scholar 

  27. Paul, B. K., Ahmed, K., Thillai Rani, M., Sai Pradeep, K. P., & Ahmed Al-Zahrani, F. (2021). Ultra-high negative dispersion compensating modified square shape photonic crystal fiber for optical broadband communication. Alexandra Engineering Journal. https://doi.org/10.1016/j.aej.2021.08.006

    Article  Google Scholar 

  28. Hassan, M., Ahmed, K., Paul, B. K., Hossain, N., & Ahmed, F. A. Z. (2021). Anomalous birefringence and nonlinearity enhancement of As2S3 and As2S5 filled D-shape fiber for optical communication. Physica Scripta, 96(11), 115501.

    Article  Google Scholar 

  29. Vigneswaran, D., Rajan, M. S. M., Biswas, B., Grover, A., Ahmed, K., & Paul, B. K. (2021). Numerical investigation of spiral photonic crystal fiber (S-PCF) with supporting high order OAM modes propagation for space division multiplexing applications. Optical and Quantum Electronics, 53, 78.

    Article  Google Scholar 

  30. Kabir, A., Ahmed, K., Hassan, M., Hossain, M., & Paul, B. K. (2020). Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication. Optics Communications, 475, 126192.

    Article  Google Scholar 

  31. Hassan, M. M., Kabir, M. A., Hossain, M. N., Truong, K. N., Paul, B. K., Ahmed, K., & Vigneswaran, D. (2020). Numerical analysis of circular core shaped photonic crystal fiber for orbital angular momentum with efficient transmission. Applied Physics B, 126, 145.

    Article  Google Scholar 

  32. Hassan, M., Kabir, A., Hossain, N., Biswas, B., Paul, B. K., & Ahmed, K. (2020). Photonic crystal fiber for robust orbital angular momentum transmission: design and investigation. Opt Quant Electron. https://doi.org/10.1007/s11082-019-2125-0

    Article  Google Scholar 

  33. Anwar, Z. A., Masroor, S., & Aamir, M. (2019). UAV based data gathering in wireless sensor networks. Wireless Personal Communications., 106(4), 1801–1811.

    Article  Google Scholar 

  34. Muhammad, R. R., Lee, J., & Kim, D. (2019). Hybrid mac protocol for uav-assisted data gathering in a wireless sensor network. Internet of Things, 14, 100088.

    Google Scholar 

  35. Angurala, M., Bala, M., & Bamber, S. S. (2021). A novel technique for energy replenishment and load balancing in wireless sensor networks. Optik Journal, 248(2021), 1–10.

    Google Scholar 

  36. Angurala, M., Bala, M., & Bamber, S. S. (2021). MRCRLB technique on modulation schemes in wireless rechargeable sensor networks. Egyptian Informatics Journal ISSN, 2021, 1110–8665. https://doi.org/10.1016/j.eij.2021.03.002

    Article  Google Scholar 

  37. Boobalan, S., Prakash, S. A., Angurala, M., Malhotra, J., & Singh, M. (2021). Performance enhancement of 3 × 20 Gbit/s MDM-Based OFDM-FSO system. Wireless Personal Communication. https://doi.org/10.1007/s11277-021-09044-4

    Article  Google Scholar 

  38. Singh, M., Chebaane, S., Khalifa, S. B., Grover, A., Dewra, S., & Angurala, M. (2021). Performance evaluation of a 4× Gbps OFDM-based FSO link incorporating hybrid W- MDM techniques. Frontiers in Physics. https://doi.org/10.3389/fphy.2021.746779

    Article  Google Scholar 

  39. Grover, A., Kumar, M., Angurala, M., Singh, M., Sheetal, A., & Maheswar, R. (2021). Rate aware congestion control mechanism for wireless sensor networks. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2021.10.032

    Article  Google Scholar 

  40. Wang, J., Kim, J.-U., Shu, L., Niu, Y., & Lee, S. (2010). A distance-based energy aware routing algorithm for wireless sensor networks. Sensors, 2010(10), 9493–9511. https://doi.org/10.3390/s101009493

    Article  Google Scholar 

Download references

Funding

The research and publication of this article was not funded and supported by any organisation.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding authors

Correspondence to Amit Grover or Mehtab Singh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Availability of data and material

Not Applicable.

Ethical approval

Not Applicable.

Code availability

The Code implemented in NS-2 Simulator shall be made available if required.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angurala, M., Singh, H., Anupriya et al. Testing Solar-MAODV energy efficient model on various modulation techniques in wireless sensor and optical networks. Wireless Netw 28, 413–425 (2022). https://doi.org/10.1007/s11276-021-02861-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02861-2

Keywords

Navigation