Skip to main content

Advertisement

Log in

Uplink performance analysis in D2D-enabled cellular networks with clustered users

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper provides an analytical framework for the coexistence of uplink cellular network and D2D network in the same frequency band. D2D devices are assumed to be distributed according to a Poisson Cluster Process (PCP), while the locations of the cellular users and macro BSs are modeled as an independent Poisson Point Process (PPP) respectively. We study the performance of the uplink in cellular network with power control and the performance of this D2D network for two content availability cases: (1) Uniform content availability, which means content of interest to a typical device is available on devices selected randomly and uniformly from the same cluster, and (2) Closest content availability, which means content of interest is available on the closest devices to a typical device in the same cluster. Using this model, the distribution of the Signal to Interference Ratios (SIR) of a typical receiving node (tagged BS or D2D Rx) can be obtained. We derive the coverage probability, area spectrum efficiency (ASE) and average rate for both cellular and D2D links to analyze the performance of the whole network, and our analysis shows that an optimal number of D2D links must be simultaneously activated per cluster in order to maximize ASE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lin, X., Andrews, J., Ghosh, A., & Ratasuk, R. (2014). An overview of 3g pp device-to-device proximity services. IEEE Communications Magazine, 52(4), 40–48.

    Article  Google Scholar 

  2. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What will 5g be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  3. Song, L., Niyato, D., Han, Z., & Hossain, E. (2015). Wireless device-to-device communications and networks. Cambridge University Press.

    Book  Google Scholar 

  4. Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5g cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52(5), 86–92.

    Article  Google Scholar 

  5. Golrezaei, N., Molisch, A. F., Dimakis, A. G., & Caire, G. (2013). Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Communications Magazine, 51(4), 142–149.

    Article  Google Scholar 

  6. George, G., Mungara, R. K. , & Lozano, A. (2015). An analytical framework for device-to-device communication in cellular networks. IEEE Transactions on Wireless Communications, 14(11), 6297–6310.

  7. Feng, D., Lu, L., Yuan-Wu, Y., Li, G., Li, S., & Feng, G. (2014). Device-to-device communications in cellular networks. IEEE Communications Magazine, 52(4), 49–55.

    Article  Google Scholar 

  8. Sakr, A. H., & Hossain, E. (2015). Cognitive and energy harvesting-based D2D communication in cellular networks: Stochastic geometry modeling and analysis. Communications IEEE Transactions on, 63(5), 1867–1880.

    Article  Google Scholar 

  9. Sun, Y., Wang, F., & Liu, Z. (2019). Coalition formation game for resource allocation in D2D uplink underlaying cellular networks. IEEE Communications Letters, 23(5), 888–891.

    Article  Google Scholar 

  10. Asadi, A., Wang, Q., & Mancuso, V. (2014). A survey on device-to-device communication in cellular networks. Communications Surveys & Tutorials, IEEE, 16(4), 1801–1819.

    Article  Google Scholar 

  11. Wyner, A. D. (1994). Shannon-theoretic approach to a gaussian cellular multiple-access channel. IEEE Transactions on Information Theory, 40(6), 1713–1727.

    Article  Google Scholar 

  12. Gilhousen, K. S., & Jacobs, I. M. (1991). On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology, 40(2), 303–312.

    Article  Google Scholar 

  13. Lee, C. H., & Haenggi, M. (2012). Interference and outage in poisson cognitive networks. IEEE Transactions on Wireless Communications, 11(4), 1392–1401.

    Article  Google Scholar 

  14. Elsawy, H., Hossain, E., & Alouini, M. S. (2014). Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks. IEEE Transactions on Communications, 62(11), 4147–4161.

    Article  Google Scholar 

  15. Ye, Q., Al-Shalash, M., Caramanis, C., & Andrews, J. G. (2014). Resource optimization in device-to-device cellular systems using time-frequency hopping. IEEE Transactions on Wireless Communications, 13(10), 5467–5480.

    Article  Google Scholar 

  16. Sun, H., Wildemeersch, M., Sheng, M., & Quek, T. Q. S. (2015). D2D enhanced heterogeneous cellular networks with dynamic TDD. IEEE Transactions on Wireless Communications, 14(8), 4204–4218.

  17. Afshang, M., Dhillon, H. S., & Chong, P. H. J. (2015). Modeling and performance analysis of clustered device-to-device networks. IEEE Transactions on Wireless Communications, 15(7), 4957–4972.

    Google Scholar 

  18. Yazdanshenasan, Z., Dhillon, H. S., Afshang, M., & Chong, P. H. J. (2016). Poisson hole process: Theory and applications to wireless networks. IEEE transactions on wireless communications, 15(11), 7531–7546.

    Article  Google Scholar 

  19. Guo, J., Durrani, S., Zhou, X., & Yanikomeroglu, H. (2017). Device-to-device communication underlaying a finite cellular network region. IEEE Transactions on Wireless Communications, 16(1), 332–347.

    Article  Google Scholar 

  20. Turgut, E., & Gursoy, M. C. (2019). Uplink performance analysis in D2D-enabled mmwave cellular networks with clustered users. IEEE Transactions on Wireless Communications, 18(2), 1085–1100.

    Article  Google Scholar 

  21. Novlan, T. D., Dhillon, H. S., & Andrews, J. G. (2013). Analytical modeling of uplink cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2669–2679.

    Article  Google Scholar 

  22. Haenggi, M. (2012). Stochastic geometry for wireless networks: Appendix introduction to R. Cambridge University Press.

    Book  Google Scholar 

  23. Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. Communications IEEE Transactions on, 59(11), 3122–3134.

    Article  Google Scholar 

  24. Stoyan, D., Kendall, W. S., & Mecke, J. (1995). Stochastic geometry and its applications (2nd ed.). Wiley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangting Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Eq. (15)

Laplace transform of the interference at the typical D2D Rx from intra-cluster interfering D2D devices \(\text{L}_{{\text{I}_{{{\text{d2d}}}}^{{{\text{intra}}}} }} \left( {s/v_{0} } \right)\) is

$$ \begin{aligned} \text{L}_{{\text{I}_{{{\text{d2d}}}}^{{{\text{intra}}}} }} \left( {s/v_{0} } \right){ = } & {\text{ E}}_{{\text{I}_{{{\text{d2d}}}}^{{{\text{intra}}}} }} \left[ {\exp \left( { - s\text{I}_{{{\text{d2d}}}}^{{{\text{intra}}}} } \right)} \right] \\ = & {\text{E}}\left[ {\exp \left( { - s\sum\limits_{{y \in \text{A}^{{x_{0} }} \backslash y_{0} }} {P_{d} h\left\| {x_{0} + y} \right\|^{ - \alpha } } } \right)} \right] \\ = & {\text{E}}_{{\text{A}^{{x_{0} }} }} \left[ {\prod\limits_{{y \in \text{A}^{{x_{0} }} \backslash y_{0} }} {\left[ {{\text{E}}_{h} \left[ {\exp \left( { - sP_{d} h\left\| {x_{0} + y} \right\|^{ - \alpha } } \right)} \right]} \right]} } \right] \\ \mathop = \limits^{\left( a \right)} & {\text{E}}_{{\text{A}^{{x_{0} }} }} \left[ {\prod\limits_{{y \in \text{A}^{{x_{0} }} \backslash y_{0} }} {\int_{0}^{\infty } {\exp \left( { - sP_{d} h\left\| {x_{0} + y} \right\|^{ - \alpha } } \right)\mu e^{ - \mu h} } } dh} \right] \\ = & {\text{E}}_{{\text{A}^{{x_{0} }} }} \left[ {\prod\limits_{{y \in \text{A}^{{x_{0} }} \backslash y_{0} }} {{\text{E}}_{Y} \left[ {\frac{\mu }{{\mu + sp_{d} \left\| {x_{0} + y} \right\|^{ - \alpha } }}} \right]} } \right] \\ \mathop = \limits^{\left( b \right)} & \sum\limits_{k = 0}^{M - 1} {\left( {\int\limits_{{R^{2} }} {\frac{\mu }{{\mu + sp_{d} \left\| {x_{0} + y} \right\|^{ - \alpha } }}f_{Y} \left( y \right)dy} } \right)}^{k} {\text{P}}\left( {{\text{K}} = k{\text{|K}} < M{ - 1}} \right) \\ = & \sum\limits_{k = 0}^{M - 1} {\left( {\int\limits_{{R^{2} }} {\frac{\mu }{{\mu + sp_{d} \left\| {x_{0} + y} \right\|^{ - \alpha } }}f_{Y} \left( y \right)dy} } \right)}^{k} \frac{{\left( {m - 1} \right)^{k} }}{k!}\frac{{e^{{ - \left( {m - 1} \right)}} }}{\xi },\xi {\text{ is }}\sum\limits_{j = 0}^{M - 1} {\frac{{\left( {m - 1} \right)^{j} e^{{ - \left( {m - 1} \right)}} }}{j!}} \\ \mathop = \limits^{\left( c \right)} & \exp \left( {\left( {m - 1} \right)\int\limits_{{R^{2} }} {\frac{\mu }{{\mu + sp_{d} \left\| {x_{0} + y} \right\|^{ - \alpha } }}f_{Y} \left( y \right)dy} + \left( { - \left( {m - 1} \right)} \right)} \right) \\ = & \exp \left( { - \left( {m - 1} \right)\int\limits_{{R^{2} }} {\frac{{sp_{d} \left\| {x_{0} + y} \right\|^{ - \alpha } }}{{\mu + sp_{d} \left\| {x_{0} + y} \right\|^{ - \alpha } }}f_{Y} \left( y \right)dy} } \right) \\ \mathop = \limits^{\left( d \right)} & \exp \left( { - \left( {m - 1} \right)\int_{0}^{\infty } {\frac{{sp_{d} r_{d1}^{ - \alpha } }}{{\mu + sp_{d} r_{d1}^{ - \alpha } }}f_{{R_{d1} }} \left( {r_{d1} /v_{0} } \right)dr_{d1} } } \right) \\ \end{aligned} $$

where (a) represents the expectation of h∼exp(μ) and (b) represents the expectation of the number of interfering devices in each cluster, (c) under the assumption \(M > > m\), the formula is simplified based on the Taylor formula, and (d) follows from the change of variable \(\left\| {x_{0} + y} \right\| = r_{d1}\).

Appendix B: Proof of Eq. (16)

Laplace transform of the interference at the typical D2D Rx from inter-cluster interfering D2D devices \(\text{L}_{{\text{I}_{{{\text{d2d}}}}^{{{\text{inter}}}} }} \left( s \right)\) is

$$ \begin{aligned} \text{L}_{{\text{I}_{{{\text{d2d}}}}^{{{\text{inter}}}} }} \left( s \right) = & {\text{E}}_{{\text{I}_{{{\text{d2d}}}}^{{{\text{inter}}}} }} \left[ {\exp \left( { - s\text{I}_{{{\text{d2d}}}}^{{{\text{inter}}}} } \right)} \right] \\ = & {\text{E}}\left[ {\exp \left( { - s\sum\limits_{{x \in \Phi_{C} }} {\sum\limits_{{y \in \text{A}^{\text{X}} }} {P_{d} h\left\| {x + y} \right\|^{ - \alpha } } } } \right)} \right] \\ = & {\text{E}}_{{\Phi_{C} }} \left[ {\prod\limits_{{x \in \Phi_{C} }} {{\text{E}}_{{\text{A}^{x} }} \left[ {\prod\limits_{{y \in \text{A}^{\text{X}} }} {\left[ {{\text{E}}_{h} \left[ {\exp \left( { - sP_{d} h\left\| {x + y} \right\|^{ - \alpha } } \right)} \right]} \right]} } \right]} } \right] \\ \mathop = \limits^{\left( a \right)} & {\text{E}}_{{\Phi_{C} }} \left[ {\prod\limits_{{x \in \Phi_{C} }} {{\text{E}}_{{\text{A}^{x} }} \left[ {\prod\limits_{{y \in \text{A}^{\text{X}} }} {{\text{E}}_{Y} \left[ {\frac{\mu }{{\mu + sp_{d} \left\| {x + y} \right\|^{ - \alpha } }}} \right]} } \right]} } \right] \\ = & {\text{E}}_{{\Phi_{C} }} \left[ {\prod\limits_{{x \in \Phi_{C} }} {{\text{E}}_{{\text{A}^{x} }} \left[ {\prod\limits_{{y \in \text{A}^{\text{X}} }} {\int\limits_{{R^{2} }} {\frac{\mu }{{\mu + sp_{d} \left\| {x + y} \right\|^{ - \alpha } }}f_{Y} \left( y \right)dy} } } \right]} } \right] \\ \mathop = \limits^{\left( b \right)} & {\text{E}}_{{\Phi_{C} }} \left[ {\prod\limits_{{x \in \Phi_{C} }} {\sum\limits_{k = 0}^{M} {\left( {\int\limits_{{R^{2} }} {\frac{\mu }{{\mu + sp_{d} \left\| {x + y} \right\|^{ - \alpha } }}f_{Y} \left( y \right)dy} } \right)}^{k} {\text{P}}\left( {{\text{K}} = k{\text{|K}} < M} \right)} } \right] \\ \mathop = \limits^{\left( c \right)} & \exp \left( { - \lambda_{c} \int\limits_{{R^{2} }} {\left( {1 - \sum\limits_{k = 0}^{M} {\left( {\int\limits_{{R^{2} }} {\frac{\mu }{{\mu + sp_{d} \left\| {x + y} \right\|^{ - \alpha } }}f_{Y} \left( y \right)dy} } \right)}^{k} \frac{{m^{k} }}{k!}\frac{{e^{ - m} }}{\eta }} \right) \cdot 2\pi vdv} } \right),\eta {\text{ is }}\sum\limits_{j = 0}^{M} {\frac{{m^{j} e^{ - m} }}{j!}} \\ \mathop = \limits^{\left( d \right)} & \exp \left( { - 2\pi \lambda_{c} \int_{0}^{\infty } {1 - \exp \left( { - m\left( {1 - \int\limits_{{R^{2} }} {\frac{\mu }{{\mu + sp_{d} \left\| {x + y} \right\|^{ - \alpha } }}f_{Y} \left( y \right)dy} } \right)} \right)vdv} } \right) \\ \mathop = \limits^{\left( e \right)} & \exp \left( { - 2\pi \lambda_{c} \int_{0}^{\infty } {1 - \exp \left( { - m\left( {1 - \int_{0}^{\infty } {\frac{\mu }{{\mu + sp_{d} r_{d2}^{ - \alpha } }}f_{{R_{d2} }} \left( {r_{d2} /v} \right)dr_{d2} } } \right)} \right)vdv} } \right) \\ & \quad \mathop \ge \limits^{\left( f \right)} \exp \left( { - 2\pi \lambda_{c} \int_{0}^{\infty } {m\int_{0}^{\infty } {\frac{{sp_{d} r_{d2}^{ - \alpha } }}{{\mu + sp_{d} r_{d2}^{ - \alpha } }}f_{{R_{d2} }} \left( {r_{d2} /v} \right)dr_{d2} } vdv} } \right) \\ \mathop = \limits^{\left( g \right)} & \exp \left( { - 2\pi \lambda_{c} m\int_{0}^{\infty } {\frac{{sp_{d} r_{d2}^{ - \alpha } }}{{\mu + sp_{d} r_{d2}^{ - \alpha } }}r_{d2} dr_{d2} } } \right) \\ = & \exp \left( { - \pi \lambda_{c} m\left( {sp_{d} } \right)^{{\frac{2}{\alpha }}} \frac{2\pi /\alpha }{{\sin \left( {2\pi /\alpha } \right)}}} \right) \\ \end{aligned} $$

where (a) represents the expectation of h∼exp(μ) and (b) represents the expectation of the number of interfering devices in each cluster, (c) follows from the probability generating functional (PGFL) of PPP [20], (d) under the assumption \(M > > m\), the formula is simplified based on the Taylor formula, (e) follows from the change of variable \(\left\| {x + y} \right\| = r_{d2}\), (f) according to Taylor, the approximate \(1{\text{ - exp}}\left( { - ax} \right) \le a\) simplification formula is developed, and (g) follows by converting from Cartesian to polar coordinates where \(\int_{0}^{\infty } {\frac{1}{{1 + su^{ - \alpha } }}} f_{U} \left( {u/v} \right)du\).

Appendix C: Proof of Eq. (18)

Laplace transform of the interference at the typical D2D Rx from cellular users \(\text{L}_{{\text{I}_{{{\text{c2b}}}} }} \left( s \right)\) is

$$ \begin{aligned} \text{L}_{{\text{I}_{{{\text{c2b}}}} }} \left( s \right) = & {\text{E}}_{{\text{I}_{{{\text{c2b}}}} }} \left[ {\exp \left( { - s\text{I}_{{{\text{c2b}}}} } \right)} \right] \\ = & {\text{E}}_{{R_{z} ,h,D_{Z} }} \left[ {\exp \left( { - s\sum\limits_{{z \in \Phi_{CU} }} {P_{cu} hR_{z}^{\alpha \varepsilon } D_{z}^{ - \alpha } } } \right)} \right] \\ = & {\text{E}}_{{R_{z} ,D_{Z} }} \left[ {\prod\limits_{{z \in \Phi_{CU} }} {{\text{E}}_{h} \left[ {\exp \left( { - sP_{cu} hR_{z}^{\alpha \varepsilon } D_{z}^{ - \alpha } } \right)} \right]} } \right] \\ \mathop = \limits^{\left( a \right)} & {\text{E}}_{{R_{z} ,D_{Z} }} \left[ {\prod\limits_{{z \in \Phi_{CU} }} {\int_{0}^{\infty } {\mu \exp \left( { - \left( {sP_{cu} R_{z}^{\alpha \varepsilon } D_{z}^{ - \alpha } + \mu } \right)x} \right)dx} } } \right] \\ = & {\text{E}}_{{R_{z} ,D_{Z} }} \left[ {\prod\limits_{{z \in \Phi_{CU} }} {\frac{\mu }{{sP_{cu} R_{z}^{\alpha \varepsilon } D_{z}^{ - \alpha } + \mu }}} } \right] \\ \mathop = \limits^{\left( b \right)} & \exp \left( { - 2\pi \lambda \int_{0}^{\infty } {1 - {\text{E}}_{{R_{z} }} \left[ {\frac{\mu }{{sP_{cu} R_{z}^{\alpha \varepsilon } x_{{}}^{ - \alpha } + \mu }}} \right]xdx} } \right) \\ = & \exp \left( { - 2\pi \lambda \int_{0}^{\infty } {{\text{E}}_{{R_{z} }} \left[ {\frac{{sP_{cu} R_{z}^{\alpha \varepsilon } x_{{}}^{ - \alpha } }}{{sP_{cu} R_{z}^{\alpha \varepsilon } x_{{}}^{ - \alpha } + \mu }}} \right]xdx} } \right) \\ \mathop = \limits^{\left( c \right)} & \exp \left( { - 2\pi \lambda \int_{0}^{\infty } {\int_{{0}}^{\infty } {\frac{{sP_{cu} R_{z}^{\alpha \varepsilon } x_{{}}^{ - \alpha } }}{{sP_{cu} R_{z}^{\alpha \varepsilon } x_{{}}^{ - \alpha } + \mu }}} f_{{R_{z} }} \left( {r_{z} } \right)xdr_{z} dx} } \right) \\ \end{aligned} $$

where (a) represents the expectation of h∼exp(μ) and (b) follows from the probability generating functional (PGFL) of PPP [24], (c) represents the distance distribution of an interfering user to its closest BS.

Appendix D: Proof of Eq. (21)

Coverage probability of a tagged BS \(P_{c}^{\left( c \right)}\) is

$$ \begin{aligned} P_{c}^{\left( c \right)} = & {\text{E}}_{{R_{c} }} \left[ {{\text{P}}\left( {{\text{SIR}}_{C} > \beta |R_{c} } \right)} \right] \\ = & \int_{0}^{\infty } {{\text{P}}\left( {{\text{SIR}}_{C} > \beta } \right)} f_{{R_{c} }} \left( {r_{c} } \right)dr_{c} \\ = & \int_{0}^{\infty } {{\text{P}}\left( {\frac{{P_{cu} hr_{c}^{\alpha \varepsilon } r_{c}^{ - \alpha } }}{{\text{I}_{{{\text{c2b}}}} + \text{I}_{{{\text{d2b}}}} }} > \beta } \right)} f_{{R_{c} }} \left( {r_{c} } \right)dr_{c} \\ = & \int_{0}^{\infty } {{\text{P}}\left( {h > \frac{{\beta \left( {\text{I}_{{{\text{c2b}}}} + \text{I}_{{{\text{d2b}}}} } \right)}}{{P_{cu} r_{c}^{\alpha \varepsilon } r_{c}^{ - \alpha } }}} \right)} f_{{R_{c} }} \left( {r_{c} } \right)dr_{c} \\ \mathop = \limits^{\left( a \right)} & \int_{0}^{\infty } {{\text{E}}_{\text{I}} \left[ {\exp \left( { - \mu \beta \left( {\text{I}_{{{\text{c2b}}}} + \text{I}_{{{\text{d2b}}}} } \right)P_{cu}^{ - 1} r_{c}^{{\alpha \left( {1 - \varepsilon } \right)}} } \right)} \right]} f_{{R_{c} }} \left( {r_{c} } \right)dr_{c} \\ \mathop = \limits^{\left( b \right)} & \int_{0}^{\infty } {\text{L}_{{\text{I}_{{{\text{c2b}}}} }} \left( s \right)\text{L}_{{\text{I}_{{{\text{d2b}}}} }} \left( s \right)f_{{R_{c} }} \left( {r_{c} } \right)dr_{c} } \\ \end{aligned} $$

where (a) represents the expectation of h∼exp(μ) and (b) follows from the change of variable \(s = \mu \beta \, r_{c}^{{\alpha \left( {1 - \varepsilon } \right)}} P_{cu}^{ - 1}\).

Appendix E: Proof of Eq. (26)

Average rate of a tagged BS is \(R_{{}}^{\left( c \right)}\) is

$$ \begin{aligned} R_{{}}^{\left( c \right)} = & {\text{E}}\left[ {{\text{ln}}\left( {1 + {\text{SIR}}} \right)} \right] \\ = & \int_{0}^{\infty } {\text{P}} \left[ {{\text{ln}}\left( {1 + {\text{SIR}}} \right) > t} \right]dt \\ = & \int_{0}^{\infty } {\int_{0}^{\infty } {\text{P}} \left[ {{\text{ln}}\left( {1 + \frac{{P_{cu} hr_{c}^{\alpha \varepsilon } r_{c}^{ - \alpha } }}{{\text{I}_{{{\text{c2b}}}} + \text{I}_{{{\text{d2b}}}} }}} \right) > t} \right]f_{{R_{c} }} \left( {r_{c} } \right)dr_{c} dt} \\ = & \int_{0}^{\infty } {\int_{0}^{\infty } {\text{P}} \left[ {h > \frac{{\left( {e^{t} - 1} \right)\left( {\text{I}_{{{\text{c2b}}}} + \text{I}_{{{\text{d2b}}}} } \right)}}{{P_{cu} r_{c}^{\alpha \varepsilon } r_{c}^{ - \alpha } }}} \right]f_{{R_{c} }} \left( {r_{c} } \right)dr_{c} dt} \\ \mathop = \limits^{\left( a \right)} & \int_{0}^{\infty } {\int_{0}^{\infty } {{\text{E}}_{\text{I}} \left[ {\exp \left( { - \mu \left( {e^{t} - 1} \right)P_{cu}^{ - 1} r_{c}^{{\alpha \left( {1 - \varepsilon } \right)}} \left( {\text{I}_{{{\text{c2b}}}} + \text{I}_{{{\text{d2b}}}} } \right)} \right)} \right]f_{{R_{c} }} \left( {r_{c} } \right)dr_{c} dt} } \\ \mathop = \limits^{\left( b \right)} & \int_{0}^{\infty } {\int_{0}^{\infty } {\text{L}_{{\text{I}_{{{\text{c2b}}}} }} \left( s \right)\text{L}_{{\text{I}_{{{\text{d2b}}}} }} \left( s \right)f_{{R_{c} }} \left( {r_{c} } \right)dr_{c} dt} } \\ \end{aligned} $$

where (a) represents the expectation of h∼exp(μ) and (b) follows from the change of variable \(s = \mu \left( {e^{t} - 1} \right) \, r_{c}^{{\alpha \left( {1{ - }\varepsilon } \right)}} P_{cu}^{ - 1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Sun, Y. Uplink performance analysis in D2D-enabled cellular networks with clustered users. Wireless Netw 28, 319–330 (2022). https://doi.org/10.1007/s11276-021-02869-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02869-8

Keywords