Skip to main content
Log in

A new localization method in internet of things by improving beetle antenna search algorithm

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Localization is regarded as one of the important challenges in the internet of things and Wireless Sensor Networks. The failure to localize sensors properly causes data loss and inefficiency in their information. Also, using GPS in all sensors causes extra cost. Hence, proper localization with least error is very important. Algorithms according to range- based and range-free are the major methods of location detection, as DV-Hop is one of the examples of range-free algorithm. Its important challenge is the error that is caused by this localization method. For solving the problem of error of GPS-free node localization, we used the new, efficient, simple Beetle Antennae Search algorithm (BAS). At first, we resolved some shortcomings of beetle antennae search algorithm. The results of the implementation on random data in Matlab shows that suggested algorithm is more accurate than firefly algorithm butterfly optimization algorithm (BOA), particle swarm optimization and whale optimization algorithm. And, beetle antennae search algorithm (BAS) does localization with least error and more accuracy. The proposed algorithm offers about 35.23% less error for positioning than the butterfly algorithm (BOA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang, P., & Tu, G. (2020). Localization algorithm of wireless sensor network based on matrix reconstruction. Computer Communications, 154, 216–222. https://doi.org/10.1016/j.comcom.2020.01.051

    Article  Google Scholar 

  2. Wang, D., Huang, Q., Chen, X., & Ji, L. (2020). Location of three-dimensional movement for a human using a wearable multi-node instrument implemented by wireless body area networks. Computer Communications, 153, 34–41. https://doi.org/10.1016/j.comcom.2020.01.070

    Article  Google Scholar 

  3. Chehri, A., Quadar, N., & Saadane, R. (2020). Communication and localization techniques in Vanet network for intelligent traffic system in smart cities: a review. In X. Qu, L. Zhen, R. J. Howlett, & L. C. Jain (Eds.), Smart transportation systems (pp. 167–177). Springer.

    Google Scholar 

  4. Giri, A., Dutta, S., & Neogy, S. (2020). Fuzzy logic-based range-free localization for wireless sensor networks in agriculture. In R. Chaki, A. Cortesi, K. Saeed, & N. Chaki (Eds.), Advanced computing and systems for security (pp. 3–12). Springer. https://doi.org/10.1007/978-981-13-8962-7_1

    Chapter  Google Scholar 

  5. .Jondhale, S. R., Sharma, M., Maheswar, R., Shubair, R., & Shelke, A. (2020). Comparison of Neural Network Training Functions for RSSI Based Indoor Localization Problem in WSN. In Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario's (pp. 112–133). Springer, Cham. https://doi.org/10.1007/978-3-030-40305-8_7

  6. Chai, Q. W., Chu, S. C., Pan, J. S., Hu, P., & Zheng, W. M. (2020). A parallel WOA with two communication strategies applied in DV-Hop localization method. EURASIP Journal on Wireless Communications and Networking, Springer, 1, 1–10. https://doi.org/10.1186/s13638-020-01663-y

    Article  Google Scholar 

  7. Podevijn, N., Trogh, J., Aernouts, M., Berkvens, R., Martens, L., Weyn, M., & Plets, D. (2020). Compass Aided TDoA Tracking in LoRaWAN networks. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS) (pp. 1420–1424). https://biblio.ugent.be/publication/8679748/file/8679754.pdf

  8. Tomic, S., Beko, M., Camarinha-Matos, L. M., & Oliveira, L. B. (2020). Distributed localization with complemented RSS and AOA measurements: Theory and methods. Applied Sciences, 10(1), 272. https://doi.org/10.3390/app10010272

    Article  Google Scholar 

  9. Li, C., Tanghe, E., Plets, D., Suanet, P., Hoebeke, J., De Poorter, E., & Joseph, W. (2020). ReLoc: Hybrid RSSI-and phase-based relative UHF-RFID tag localization with COTS devices. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2020.2991564

    Article  Google Scholar 

  10. Jiang, X., & Li, S. (2017). BAS: beetle antennae search algorithm for optimization problems. arXiv preprint. https://arxiv.org/abs/1710.10724v1

  11. Hamdani, M., Qamar, U., Butt, W. H., Khalique, F., & Rehman, S. (2018). A comparison of modern localization techniques in wireless sensor networks (WSNs). In Proceedings of the future technologies conference (pp. 535–548). Springer, Cham. https://doi.org/10.1007/978-3-030-02683-7_38

  12. Khelifi, F., Bradai, A., Benslimane, A., Rawat, P., & Atri, M. (2019). A survey of localization systems in internet of things. Mobile Networks and Applications, Springer, 24(3), 761–785. https://doi.org/10.1007/s11036-018-1090-3

    Article  Google Scholar 

  13. Jeong, J. P., Yeon, S., Kim, T., Lee, H., Kim, S. M., & Kim, S. C. S. A. L. A. (2018). Smartphone-assisted localization algorithm for positioning indoor iot devices. Wireless Networks, Springer, 24(1), 27–47. https://doi.org/10.1007/s11276-016-1309-9

    Article  Google Scholar 

  14. Lu, B., Wang, L., Liu, J., Zhou, W., Guo, L., Jeong, M. H., & Han, G. (2018). LaSa location aware wireless security access control for IoT systems. Mobile Networks and Applications, Springer. https://doi.org/10.1007/s11036-018-1088-x

    Article  Google Scholar 

  15. Sotenga, P. Z., Djouani, K., Kurien, A. M., & Mwila, M. M. (2017). Indoor localisation of wireless sensor nodes towards internet of things. Procedia Computer Science, Elsevier, 109, 92–99. https://doi.org/10.1016/j.procs.2017.05.299

    Article  Google Scholar 

  16. Cottone, P., Gaglio, S., Re, G. L., & Ortolani, M. (2016). A machine learning approach for user localization exploiting connectivity data. Engineering Applications of Artificial Intelligence, Elsevier, 50, 125–134.

    Article  Google Scholar 

  17. Phoemphon, S., So-In, C., & Nguyen, T. G. (2018). An enhanced wireless sensor network localization scheme for radio irregularity models using hybrid fuzzy deep extreme learning machines. Wireless Networks, Springer. https://doi.org/10.1007/s11276-016-1372-2

    Article  Google Scholar 

  18. Gumaida, B. F., & Luo, J. (2019). Novel localization algorithm for wireless sensor network based on intelligent water drops. Wireless Networks, Springer, 25(2), 597–609. https://doi.org/10.1007/s11276-017-1578-y

    Article  Google Scholar 

  19. Arora, S., & Singh, S. (2017). Node localization in wireless sensor networks using butterfly optimization algorithm. Arabian Journal for Science and Engineering, Springer. https://doi.org/10.1007/s13369-017-2471-9

    Article  Google Scholar 

  20. Yu, S., Xu, Y., Jiang, P., Wu, F., & Xu, H. (2017). Node self-deployment algorithm based on pigeon swarm optimization for underwater wireless sensor networks. Sensors. mdpi, 17, 674. https://doi.org/10.3390/s17040674

    Article  Google Scholar 

  21. Rabhi, S., & Semchedine, F. (2019). Localization in wireless sensor networks using DV-hop algorithm and fruit fly meta-heuristic. Journal Homepage. https://doi.org/10.18280/ama_b.620103

    Article  Google Scholar 

  22. Wang, P., Xue, F., Li, H., Cui, Z., Xie, L., & Chen, J. (2019). A multi-objective DV-hop localization algorithm based on NSGA-II in Internet of Things. Journal Mathematics, mdpi. https://doi.org/10.3390/math7020184

    Article  Google Scholar 

  23. Strumberger, I., Minovic, M., Tuba, M., & Bacanin, N. (2019). Performance of elephant herding optimization and tree growth algorithm adapted for node localization in wireless sensor networks. Sensors, mdpi, 19(11), 2515. https://doi.org/10.3390/s19112515

    Article  Google Scholar 

  24. Lin, M., Li, Q., Wang, F., & Chen, D. (2020). An improved beetle antennae search algorithm and its application on economic load distribution of power system. Digital Object Identifier IEEE. https://doi.org/10.1109/ACCESS.2020.2997687

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elahe Sabahat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabahat, E., Eslaminejad, M. & Ashoormahani, E. A new localization method in internet of things by improving beetle antenna search algorithm. Wireless Netw 28, 1067–1078 (2022). https://doi.org/10.1007/s11276-022-02888-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02888-z

Keywords

Navigation