Skip to main content
Log in

A Practical Space-Code Correlator Receiver for DSP Based Software Radio Implementation in CDMA2000

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Development of practical algorithms for beamforming in 3G CDMA systems and their software radio implementations are still a challenging task, which will facilitate upgrading of traditional base stations into smart antenna capable 3G base stations. In this paper, we propose a practical space-code correlator (SCC) receiver structure for its software radio implementation a DSP. SCC’s advantage comes from the fact that it doesn’t require any training sequence or learning parameter as in other algorithms (LMS or CM). DSP implementations of the SCC are performed using Texas Instruments C67xx family platforms. In the simulations, reverse link base band signal format of CDMA2000 is used and the effects of different array topologies (uniform linear array-ULA or uniform circular array-UCA) are considered. The implementation results regarding beamforming accuracy, weight vector computation time (execution time), search resolution effect on DOA estimation accuracy, DSP resource utilization, and received SINR are presented. The results show that DSP based SCC beamformer can estimate weight vectors within less than 10 ms with DOA search resolution of 2° especially when C6713 DSP is used. With faster DSPs and larger search resolutions, execution time could be significantly reduced as well. It provides comparable SINR performance with LMS and CM algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patti J.J., Husnay R.M., Pintar J. (1999) A smart software radio: Concept development and demonstration. IEEE Journal on Selected Areas in Communications 17(4): 631–649

    Article  Google Scholar 

  2. Burns P. (2003) Software defined radio for 3G. Artec House, Boston, MA, USA, pp 221–237

    Google Scholar 

  3. Rappaport T.S., Liberti J.C. (1999) Smart antennas for wireless communication. Prentice Hall, NJ

    Google Scholar 

  4. Winters J.H. (1998) Smart antennas for wireless systems. IEEE Personal Communications Magazine 5: 23–27

    Article  Google Scholar 

  5. Godara, L. (1997). Application of antenna arrays to mobile communications, Part II: beamforming and direction-of-arrival considerations. In Proceedings of the IEEE (Vol. 85, No. 8, pp. 1195–1245).

  6. Razavilar J., Rashid-Farrokhi F., Liu K.J.R. (1999) Software radio architecture with smart antennas: A tutorial on algorithms and complexity. IEEE Journal of Selected Areas in Communications, 17(4): 662–676

    Article  Google Scholar 

  7. Texas Instruments. (2002). TMS320C6711, TMS320C6711B, TMS320C6711C floating-point digital signal processors. Literature Number: SPRS088D. Texas, USA.

  8. Xilinx. (2001). Virtex-II 1.5V field-programmable gate arrays. Xilinx Data Sheet (pp. 1–4).

  9. Naguib, A. F. (1996). Adaptive antennas for CDMA wireless networks. Ph. D. Dissertation, Department of Electrical Engineering, Stanford University.

  10. Choi S., Shim D. (2000) A novel adaptive beamforming algorithm for a smart antenna system in a CDMA mobile communication environment. IEEE Transactions in Vehicular Technology 49(5): 1793–1806

    Article  Google Scholar 

  11. Choi S., Choi J., Im H.-J., Choi B. (2002) A novel adaptive beamforming algorithm for antenna array CDMA systems with strong interferers. IEEE Transactions in Vehicular Technology 51(5): 808–816

    Article  Google Scholar 

  12. Yang J., Xi H., Yang F., Zhao Y. (2006) Fast adaptive blind beamforming algorithm for antenna array in CDMA systems. IEEE Transactions in Vehicular Technology 55(2): 549–558

    Article  Google Scholar 

  13. Migliore M.D. (2006) A beamforming algorithm for adaptive antennas operating in crowded CDMA signal environment. IEEE Transactions on Antennas and Propagation 54(4): 1354–1357

    Article  MathSciNet  Google Scholar 

  14. Tavassoli, F., Abolhassani, B., Oraizi, H. (2006, September). A Simple adaptive beamforming algorithm for CDMA wireless communication systems. In Proceedings of IEEE PIMRC’06 (pp. 1–5).

  15. Zamiri-Jafarian, H., & Rastgoo, H. (2006, June). Recursive maximum SINR blind beamforming algorithm for CDMA systems. In Proceedings of IEEE ICC’06 (Vol. 7, pp. 3323–3327).

  16. Yang, J., Xi, H., & Yang, F. (2005, July). RLS-based blind adaptive beamforming algorithm for antenna array in CDMA systems. In Proceedings of International Conference on Information Acquisition (6 pp).

  17. Tuan, L. M., Su, V. P., Kim, J., & Yoon, G. (2002, November). An MMSE-based beamforming algorithm for smart antenna applied to an MC-CDMA system with co-channel interference. In Proceedings of IEEE ICCS’02 (Vol. 2, pp. 1252–1256).

  18. Eireiner, T., Muller, T., Luy, J.-F., & Owens, F. (2003, June). Implementation of a smart antenna system with an improved NCMA algorithm. In IEEE MTT-S International Microwave Symposium Digest (Vol. 3, pp. 1529–1532).

  19. Kim, Y., Im, H., Park, J., Bahk, H., Kim, J., & Choi, S. (2002, November). Implementation of smart antenna base station with a novel searcher and tracker for CDMA 2000 1X. In Proceedings of IEEE ICCS’02 (Vol. 1, pp. 394–398).

  20. Wu, J., Sheng, W.-X., Chan, K.-P., Chung, W.-K., Cheng, K.-K. M., & Wu, K.-L. (2002, June). Smart antenna system implementation based on digital beam-forming and software radio technologies. In IEEE MTT-S International Microwave Symposium Digest (Vol. 1, pp. 323–326).

  21. Im, H., & Choi, S. (2000). Implementation of a smart antenna test-bed. In IEEE AP-S International Symposium & URSI Radio Science Meeting (pp. 952–955).

  22. Choi, S., Lee, Y., & Hirasawa, K. (1997). Real-time design of a smart antenna system utilizing a modified conjugate gradient method for CDMA-Based Mobile Communications. In IEEE VTC’97 (Vol. 1, pp. 183–187).

  23. Perez-Neira A., Mestre X., Fonollosa J.R. (2001) Smart antennas in software base stations. IEEE Communications Magazine 39(2): 166–173

    Article  Google Scholar 

  24. Pedersen, K. I., & Mogensen, P. E. (1999, May). Performance comparison of vector-RAKE receivers using different combining schemes and antenna array topologies. In Proceedings of IEEE VTC’99 (Vol. 1, pp. 233–237).

  25. Lagunas, M. A., Vidal, J., & Pérez-Neira, A. I. (2000, November). Joint array combining and MLSE for single-user receivers in multipath gaussian multiuser channels. In Proceedings of IEEE JSAC’00 (Vol. 18, No. 11).

  26. Winters J.H. (1984) Optimum Combining in Digital Mobile Radio with Cochannel Interference. IEEE Transactions on Vehicular Technology 33(3): 144–155

    Article  MathSciNet  Google Scholar 

  27. Martinez, R., Garcia, L., de Haro, L., & Calvo, M. (2002, August). A DSP-based implementation of adaptive algorithms for a W-CDMA reverse link beamformer. In Proceedings of IEEE RAWCON’02 (pp. 141–144).

  28. Garcia, L. G., Montava, C. P., & de Haro Ariet, L. (2005, September). Implementation of a setup module for a plug-and-play UMTS smart antenna. In Proceedings of IEEE PIMRC’05 (Vol. 4, pp. 2342–2346).

  29. TIA/EIA Interim Standard. (1999). Physical Layer Standard for CDMA2000 spread spectrum systems. TIA/EIA/S-2000-2. Arlington, VA, USA: Telecommunications Industry Association.

  30. Kucuk, K., Karakoc, M., Kavak, A., & Yigit, H. (2005, September). Design and hardware implementation of a novel smart antenna algorithm with using TI DSPs. In Proceedings of IEEE ISWCS’05 (pp. 596–600).

  31. Veen J., Paulraj A. (1996) An analytical constant modulus algorithm. IEEE Transactions on Signal Processing 44(5): 1136–1155

    Article  Google Scholar 

  32. Ames P., Gabor J. (2000) The evolution of third generation cellular standards. Intel Technology Journal 2: 1–6

    Google Scholar 

  33. Kucuk, K. (2005). Implementation of smart antenna algorithms for CDMA2000 reverse link on digital signal processors with software radio. M.Sc. Thesis. at Kocaeli University.

  34. Texas Instruments. (1998). TMS320C6201/6701 evaluation module user’s guide. Literature Number: SPRU269D. Texas, USA.

  35. Texas Instruments. (2002). TMS320C6711, TMS320C6711B, TMS320C6711C Floating-point Digital Signal Processors. Literature Number: SPRS088D. Texas, USA.

  36. Spectrum Digital, Inc. (2003). TMS320C6713 DSK Technical Reference, 506735-0001 Rev. A, Stafford, TX, USA.

  37. Lapsley P., Bier J., Shoham A., Lee E.A. (1997) DSP Processor fundamentals: Architectures and features. Wiley-IEEE Press, New York

    MATH  Google Scholar 

  38. Texas Instruments. (2001). Code composer studio getting started guide. TX.

  39. MATLAB Link for Code Composer Studio® Development Tools 1.2 Release Notes, http://www.mathworks.com/products/ccslink.

  40. Karakoc, M., & Kavak, A. (2004). Evaluation of smart antenna algorithms for CDMA2000 reverse link. Lecture Notes in Computer Science (Vol. 3042, pp. 1360–1365). Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Kavak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucuk, K., Kavak, A., Karakoc, M. et al. A Practical Space-Code Correlator Receiver for DSP Based Software Radio Implementation in CDMA2000. Wireless Pers Commun 49, 245–261 (2009). https://doi.org/10.1007/s11277-008-9570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-008-9570-6

Keywords

Navigation