Skip to main content
Log in

5G Based on Cognitive Radio

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Both the cognitive radio (CR) and the fifth generation of cellular wireless standards (5G) are considered to be the future technologies: on one hand, CR offers the possibility to significantly increase the spectrum efficiency, by smart secondary users (CR users) using the free licensed users spectrum holes; on the other hand, the 5G implies the whole wireless world interconnection (WISDOM—Wireless Innovative System for Dynamic Operating Megacommunications concept), together with very high data rates Quality of Service (QoS) service applications. In this paper, they are combined together into a “CR based 5G”. With this aim, two novel ideas are advanced: the 5G terminal is a CR terminal and the CR technology is chosen for WISDOM concept. Thus, the 5G takes CR flexibility and adaptability and makes the first step through a commercial and tangible form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prasad, R., & Lauridsen, O. M. (2007). Convergence of navigation and communication. In An AFCEA International Symposium on Aerospace Technologies and Applications for Dual Use, Rome.

  2. Evolution from 3G to 4G and beyond (5G). http://www.powerpoint-search.com/evolution-from-3g-to-4g-and-beyond-5g-ppt.html.

  3. Tellabs Operations, 4G: the What, Why and When. http://www.tellabs.com/resources/papers/tlab_4g-whatwhywhen.pdf.

  4. Agilent Technologies, IMT-Advanced: 4G Wireless Takes Shape in an Olympic Year. http://cp.literature.agilent.com/litweb/pdf/5989-9793EN.pdf.

  5. Prasad, R., & Ohmori, S. (2009). Ubiquitous easy life. In Second Japan EU Symposium on the “Future Internet”, Tokyo.

  6. Janevski, T. (2009). 5G Mobile phone concept. In 6th IEEE Consumer Communications and Networking Conference—CCNC 2009 (pp. 1–2).

  7. Chen K. C., Prasad R. (2009) Cognitive radio networks. Wiley, New York

    Book  Google Scholar 

  8. Chen, K. C., Kartal Cetin, B., Peng, Y. C., Prasad, N., Wang, J., & Lee, S. (2009). Routing for cognitive radio networks consisting of opportunistic links. Wiley InterScience, Wireless Communications and Computing.

  9. Khalife H., Malouch N., Fdida S. (2009) Multihop cognitive radio networks: to route or not to route. IEEE Network 23: 20–25

    Article  Google Scholar 

  10. Chen, K. C., Peng, Y. J., Prasad, N., Liang, Y. C., & Sun, S. (2008). Cognitive radio network architecture: Part I—general structure. In ACM ICUIMC, Seoul.

  11. Chen, K. C., Peng, Y. J., Prasad, N., Liang, Y. C., & Sun, S. (2008). Cognitive radio network architecture: Part II—trusted network layer structure. In ACM ICUIMC, Seoul.

  12. Miljanic, Z., Seskar, I., Le, K., & Raychaudhuri, D. (2007). The WINLAB network centric cognitive radio hardware platform—WiNC2R. In CrownCom (pp. 155–160).

  13. Kuroda, M., Ishizu, K., Harada, H., & Komiya, R. (2007). A study of radio-information services for networks of cognitive radios. In SECON (pp. 662–669).

  14. Jiang, H., Liu, Y., Zhang, X.-q., & Huang, Y.-q. (2009). Design of cognitive radio node engine based on genetic algorithm. In ICIE (pp. 22–25).

  15. Park, S. K., Shin, Y., & Lee, W. C.: (2007). Goal-Pareto based NSGA for optimal reconfiguration of cognitive radio systems. In CrownCom (pp. 147–153).

  16. Doerr, C., Grunwald, D., & Sicker, D. C.: (2008). Enhancing cognitive radio algorithms through efficient, automatic adaptation management. In VTC (pp. 1–5).

  17. Klumperink E. A. M., Shrestha R., Mensink E., Arkesteijn V. J., Nauta B. (2007) Cognitive radios for dynamic spectrum access—polyphase multipath radio circuits for dynamic spectrum access. IEEE Communications Magazine 45: 104–112

    Article  Google Scholar 

  18. Turunen, V., Kosunen, M., Huttunen, A., Kallioinen, S., Ikonen, P., Parssinen, A., & Ryynanen, J. (2009). Implementation of cyclostationary feature detector for cognitive radios. In CROWNCOM (pp. 1–4).

  19. Nishi, K., Yoshizawa, S., & Miyanaga, Y. (2007). A study of dynamic reconfigurable FFT processor for OFDM based cognitive radio. In ISCIT (1507–1510).

  20. Haykin S. (2005) Cognitive radio: Brain-empowered wireless communications. IEEE Selected Areas in Communications 23: 201–220

    Article  Google Scholar 

  21. Chen, K. C., Kung, L. H., Shiung, D., Prasad, R., & Chen, S. (2007). Self-organizing terminal architecture for cognitive radio networks. In The 10th International Symposium on Wireless Personal Multimedia Communications.

  22. Krishnamurthy S., Thoppian M., Venkatesan S., Prakash R. (2005) Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks. MILCOM 1: 455–460

    Google Scholar 

  23. Doerr, C., Neufeld, M., Fifield, J., Weingart, T., Sicker, D. C., & Grunwald, D. (2005). MultiMAC—An adaptive MAC framework for dynamic radio networking. In DySPAN (pp. 548–555).

  24. Taniguchi, N., Aust, S., Takizawa, Y., Yamaguchi, A., & Obana, S. (2007). Packet allocation for efficient use of multiple wireless links in cognitive radio networks. In GIIS (pp. 27–34).

  25. Marojevic, V., Salazar, J., Reves, X., & Gelonch, A. (2007). On integrating radio, computing, and application resource management in cognitive radio systems. In WiMOB (pp. 32–32).

  26. Kannan, R., Wu, Z., Wei, S., Chakravarthy, V., & Rangaswamy, M. (2007). Soft-decision cognitive radio power control based on intelligent spectrum sensing. In International Waveform Diversity and Design Conference (pp. 193–194).

  27. Xia, W., & Qi, Z. (2007). Power control for cognitive radio base on game theory. In WiCom 2007 (pp. 1256–1259).

  28. Peng, T., Wang, W., Lu, Q., & Wang, W. (2007). Subcarrier allocation based on water-filling level in OFDMA-based cognitive radio networks. In WiCom (pp. 196–199).

  29. Le, H.-S. T., & Liang, Q. (2007). An efficient power control scheme for cognitive radios. In WCNC (pp. 2559–2563).

  30. Qian, L., Li, X., Attia, J., & Gajic, Z. (2007). Power control for cognitive radio ad hoc networks. In LANMAN (pp. 7–12).

  31. Pursley M. B., Royster T. C. (2008) Low-complexity adaptive transmission for cognitive radios in dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications 26: 83–94

    Article  Google Scholar 

  32. Lansford, J. (2004). UWB coexistence and cognitive radio. In IEEE International Workshop on Ultra Wideband System (pp. 35–39).

  33. Sydor J. (2004) True broadband for the countryside [5 GHz cognitive radio]. Communications Engineer 2: 32–36

    Article  Google Scholar 

  34. Hoven N., Sahai A. (2005) Power scaling for cognitive radio. Wireless Networks, Communications and Mobile Computing Conference 1: 250–255

    Article  Google Scholar 

  35. Jing, X., Mau, S.-C., Raychaudhuri, D., & Matyas, R. (2005). Reactive cognitive radio algorithms for co-existence between IEEE 802.11b and 802.16a networks. In GLOBECOM.

  36. Ishii, H., & Wornell, G. W. (2005). OFDM blind parameter identification in cognitive radios. In PIMRC (pp. 700–705).

  37. Tang, H. (2005). Some physical layer issues of wide-band cognitive radio systems. In DySPAN (pp. 151–159).

  38. Huang, S., Ding, Z., & Liu, X. (2007). Non-intrusive cognitive radio networks based on smart antenna technology. In GLOBECOM (pp. 4862–4867).

  39. Azarnasab, E., Kempter, R., Patwari, N., & Farhang-Boroujeny, B. (2007). Filterbank multicarrier and multicarrier CDMA for cognitive radio systems. In CrownCom (pp. 472–481).

  40. Chu, F.-S., & Chen, K.-C. (2007). Radio resource allocation in OFDMA cognitive radio systems. In PIMRC (pp. 1–5).

  41. Niyato D., Hossain E. (2008) Market-equilibrium, competitive, and cooperative pricing for spectrum sharing in cognitive radio networks: Analysis and comparison. IEEE Transactions on Wireless Communications 7: 4273–4283

    Article  Google Scholar 

  42. Safdar, G. A., & O’Neill, M. (2009). Common control channel security framework for cognitive radio networks. In VTC (pp. 1–5).

  43. Brown, T. X., & Sethi, A. (2007). Potential cognitive radio denial-of-service vulnerailities and protection countermeasures: A multi-dimensional analysis and assessment. In CrownCom (pp. 456–464).

  44. Sampath, A., Dai, H., Zheng, H., & Zhao, B. Y. (2007). Multi-channel jamming attacks using cognitive radios. In ICCCN (pp. 352–357).

  45. Xu, W., Kamat, P., & Trappe, W. (2006). TRIESTE: A trusted radio infrastructure for enforcing SpecTrum etiquettes. In SDR (pp. 101–109).

  46. Nomura, R., Kuroda, M., & Mizuno, T. (2007). Evaluation of EAP based re-authentication protocol for high-speedvehicular handover in cognitive radio networks. In CrownCom.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia-Ionela Badoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badoi, CI., Prasad, N., Croitoru, V. et al. 5G Based on Cognitive Radio. Wireless Pers Commun 57, 441–464 (2011). https://doi.org/10.1007/s11277-010-0082-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-0082-9

Keywords

Navigation