Skip to main content
Log in

A New Approach to Bivariate Hoyt Distribution and its Application in Performance Analysis of Dual-Diversity Receivers

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Novel infinite series based expressions for the bivariate Hoyt distribution are derived. More specifically, expressions for the joint probability density function (JPDF) and the joint cumulative distribution function (JCDF) of two Hoyt fading envelopes are derived, and proposed for use in performance analyses of dual-branch diversity receivers operating over correlated Hoyt fading channels. Using these reasonably simple and mathematically tractable expressions, we evaluate the performance of a dual-branch selection combining (SC) diversity receiver in terms of the outage probability (P out ) and the average bit error probability (ABEP) criteria. The ABEP performance is evaluated for binary differential phase-shift-keying (BDPSK) and binary non-coherent frequency-shift keying (BNFSK) modulation schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoyt R. S. (1947) Probability functions for the modulus and angle of the normal complex variate. Bell System Technical Journal 26: 318–359

    MathSciNet  Google Scholar 

  2. Simon M. K., Alouini M. S. (2004) Digital communication over fading channels, 2nd edn. Wiley, New York

    Book  Google Scholar 

  3. Radaydeh R. M. (2007) Average error performance of M-ary modulation schemes in Nakagami-q (Hoyt) fading channels. IEEE Communications Letters 11(3): 255–257

    Article  Google Scholar 

  4. Youssef N., Wang C.-X., Patzold M. (2005) A study on the second order statistics of Nakagami-Hoyt mobile fading channels. IEEE Transactions on Vehicular Technology 54(4): 1259–1265

    Article  Google Scholar 

  5. Youssef N., Elbahri W., Patzold M., Elasmi M. (2005) On the crossing statistics of phase processes and random FM noise in Nakagami-q mobile fading channels. IEEE Transactions on Wireless Communications 4(1): 24–29

    Article  Google Scholar 

  6. Baid A., Fadnavis H., Sahu P. R. (2008) Performance of a predetection EGC receiver in Hoyt fading channels for arbitrary number of branches. IEEE Communications Letters 12(9): 627–629

    Article  Google Scholar 

  7. Fraidenraich G., Santos Filho J. C. S., Yacoub M. D. (2005) Second-order statistics of maximal-ratio and equal-gain combining in Hoyt fading. IEEE Communications Letters 9(1): 19–21

    Google Scholar 

  8. Trung, Q. D., Hyundong, S., & Een-Kee, H. (2007). Error probability of binary and M-ary signals with spatial diversity in Nakagami-q (Hoyt) fading channels. EURASIP Journal on Wireless Communications and Networking, Vol. 2007, Article ID 53742, 8 pages. doi:10.1155/2007/53742.

  9. Tan C. C., Beaulieu N. C. (1997) Infinite series representations of the bivariate Rayleigh and Nakagami-m distributions. IEEE Transactions on Communications 45: 1159–1161

    Article  Google Scholar 

  10. Zogas D. A., Karagiannidis G. K. (2005) Infinite-series representations associated with the bivariate Rician distribution and their applications. IEEE Transactions on Communications 53(11): 1790–1794

    Article  Google Scholar 

  11. De Souza, R. A. A., & Yacoub M. D. (2009). Maximal-ratio and equal-gain combining in Hoyt (Nakagami-q) fading. ftp://lenst.det.unifi.it/pub/LenLar/proceedings/2009/vtc09/DATA/02-03-05.PDF

  12. De Souza, R. A. A., & Yacoub, M. D. (2009). Bivariate Nakagami-q (Hoyt) distribution. In Proceedings of IEEE ICC 2009 (pp. 1–5). Dresden, June 14–18, 2009.

  13. Mendes J. R., Yacoub M. D., Fraidenraich G. (2006) Closed-form generalized power correlation coefficient of the Hoyt fading signal. IEEE Communications Letters 10(2): 94–96

    Article  Google Scholar 

  14. Abramowitz, M., & Stegun, I. A. (1972). Modified Bessel functions I and K, §96. In Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing. New York: Dover

  15. Sagias N. C., Karagiannidis G. K. (2005) Gaussian class multivariate Weibull distributions: Theory and applications in fading channels. IEEE Transactions on Information Theory 51(10): 3608–3619

    Article  MathSciNet  Google Scholar 

  16. Sagias, N. C., Karagiannidis, G. K., Bithas, P. S., & Mathiopoulos, P. T. (2005). On the correlated Webull fading model and its applications. In 62nd Vechicular technical conference, 25–28 September (Vol. 4, pp. 2149–2153).

  17. Sagias N. C., Zogas D. A., Karagiannidis G. K. (2005) Selection diversity receivers over nonidentical Weibull fading channels. IEEE Transactions on Vehicular Technology 54(6): 2146–2151

    Article  Google Scholar 

  18. Karagiannidis G. K., Zogas D. A., Kotsopoulos S. A. (2003) On the multivariate Nakagami-m distribution with exponential correlation. IEEE Transactions on Communications 51(8): 1240–1244

    Article  Google Scholar 

  19. http://reference.wolfram.com/mathematica/tutorial/NIntegrateIntegrationStrategies.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djoko V. Bandjur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandjur, D.V., Bandjur, M.V. & Stefanovic, M.C. A New Approach to Bivariate Hoyt Distribution and its Application in Performance Analysis of Dual-Diversity Receivers. Wireless Pers Commun 63, 601–612 (2012). https://doi.org/10.1007/s11277-010-0153-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-0153-y

Keywords

Navigation