Skip to main content
Log in

Available and Waiting Times for Cognitive Radios

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radios (CRs) have been recently proposed for the problem of spectrum scarcity. The principle of CRs’ operation is based on the opportunistic access to the frequency spectrum mainly dedicated to primary users (PUs). The statistical time pattern of PUs’ channel usage and arrival can affect the usability of specific frequency bands for CRs. In this note, the effect of the arrival rate and channel holding time of PUs on the available times for CRs is analyzed. To this end, first, based on Poissonian arrivals, the available time for CRs is calculated. Then, assuming a gamma distribution for the inter-arrival times and a uniform distribution of channel holding time of PU in these intervals, the probability density function and moments of the available time for CRs are derived. Next, the effect of PUs statistical parameters on the average number of packets and the average symbol rate that a CR can transmit is analyzed. Also, taking that CR needs at least T seconds, the average waiting time is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mitola, J. (1999). Cognitive radio for flexible mobile multimedia communications. In Proceedings of the IEEE workshop on mobile multimedia communications (pp. 3–10).

  2. Haykin S. (2005) Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 23: 201–220

    Article  Google Scholar 

  3. Fette, B. (2009). Cognitive radio technology (2nd ed.).

  4. Hossain E., Niyato D., Han Z. (2009) Dynamic spectrum access and management in cognitive radio networks (1st ed.). Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Hossain E., Bhargava V. (2007) Cognitive wireless communication networks. Springer, Berlin

    Book  Google Scholar 

  6. Arslan H. (2007) Cognitive radio, software defined radio, and adaptive wireless systems. Springer, Berlin

    Book  Google Scholar 

  7. Chen K. C., Prasad R. (2009) Cognitive radio networks. Wiley, New York

    Book  Google Scholar 

  8. Doyle L. E. (2009) Essentials of cognitive radio (1st ed.). Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Dillinger M., Madani K., Alonistioti N. (2003) Software defined radio: Architectures, systems and functions. Wiley, New York

    Google Scholar 

  10. Jedrzycki, C., & Leung, V. C. M. (1996). Probability distribution of channel holding time in cellular telephone systems. In Proceedings of the IEEE vehicular technology conference VTC’96 (pp. 247–251).

  11. Willkomm D., Machiraju S., Bolot J., Wolisz A. (2009) Primary user behavior in cellular networks and implications for dynamic spectrum access. IEEE Communications Magazine 47: 88–95

    Article  Google Scholar 

  12. Chlebus, E. (1997). Empirical validation of call holding time distribution in cellular communications systems. In Teletraffic contributions for the information age (pp. 1179–1189).

  13. Barceló, F., & Bueno, S. (1998). Idle and inter-arrival time statistics in public access mobile radio (PAMR) systems. In Proceedings of the IEEE GLOBECOM 97 (pp. 126–130), November 1998.

  14. Tunnicliffe, G. W., Murch, A. R., Sathyendran, A., & Smith, P. J. (1999). Analysis of traffic distribution in cellular networks. In Proceedings of the 49th IEEE vehicular technology conference (Vol. 3, pp. 2075–2079), May 1999.

  15. Jordán, J., & Barceló, F. (1997). Statistical of channel occupancy in trunked PAMR systems. In Teletraffic contributions for the information age (ITC 15) (pp. 1169–1178). Amsterdam: Elsevier, June 1997.

  16. Zonoozi M. M., Dassanayake P. (1997) User mobility modeling and characterization of mobility patterns. IEEE Journal on Selected Areas in Communications 15: 1239–1252

    Article  Google Scholar 

  17. Bakry S. H., Ackroyd M. H. (1982) Teletraffic analysis of multicell mobile radio telephone systems. IEEE Transactions on Communications COM-30: 1905–1909

    Article  Google Scholar 

  18. Ule, A., & Boucherie, R. J. (2000). On the distribution of calls in a wireless network driven by fluid traffic. Tinbergen Institute. http://www.tinbergen.nl.

  19. Bolotin, V. (1994). Telephone circuit holding time distributions. In Proceedings of the 14th international teletraffic congress, Antibes (pp. 125–134).

  20. McHenry, M. A., Tenhula, P. A., McCloskey, D., Roberson, D. A., & Hood, C. S. (2006). Chicago spectrum occupancy measurements and analysis and a long-term studies proposal. In Proceedings of the 1st international workshop on technology and policy for accessing spectrum, August 2006.

  21. Holland, O., Cordier, P., Muck, M., Mazet, L., Klock, C., & Renk, T. (2007). Spectrum power measurements in 2G and 3G cellular phone bands during the 2006 football world cup in Germany. In New frontiers in dynamic spectrum access networks (pp. 575–578).

  22. Chiang, R., Rowe, G., & Sowerby, K. (2007). A quantitative analysis of spectral occupancy measurements for cognitive radio. In Proceedings of the 65th IEEE vehicular technology conference (pp. 3016–3020), April 2007.

  23. Renk, T., Kloeck, C., Ondral, F. K., Cordier, P., Holland, O., & Negredo, F. (2007). Spectrum measurements supporting reconfiguration in heterogeneous networks. In Mobile and wireless communications summit (pp. 1–5), July 2007.

  24. Kamakaris, T., Buddhikot, M. M., & Iyer, R. (2005). A case for coordinated dynamic spectrum access in cellular networks. In New frontiers in dynamic spectrum access networks (pp. 289–298), November.

  25. Sánchez, J. I., Barceló, F., & Jordán, J. (1998). Inter-arrival time distribution for channel arrivals in cellular telephony. In Proceedings of the 5th international workshop on mobile multimedia communication MoMuc’98 (pp. 245–254). Berlin, October 12–14.

  26. Barcelóa, F., & Jordán, J. (1999). Channel holding time distribution in public cellular telephony. In Proceedings of the 16th international teletraffic congress (pp. 107–116).

  27. Papoulis A. (1965) Probability, random variables, and stochastic processes (3rd ed.). McGraw-Hill Inc, Maidenherd

    MATH  Google Scholar 

  28. Medhi J. (2003) Stochastic models in queuing theory (2nd ed.). Academic Press, New York

    Google Scholar 

  29. Abramowitz M., Stegun I. A. (1965) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York

    Google Scholar 

  30. Jeffrey A. (2000) Handbook of mathematical formulas and integrals (2nd ed.). Academic Press, New York

    MATH  Google Scholar 

  31. Oppenheim A. V., Willsky A., Nawab S. H. (1997) Signals and systems (2nd ed.). Prentice-Hall, Inc, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saralees Nadarajah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, S.M., Teimouri, M. & Nadarajah, S. Available and Waiting Times for Cognitive Radios. Wireless Pers Commun 65, 319–334 (2012). https://doi.org/10.1007/s11277-011-0450-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0450-0

Keywords

Navigation