Skip to main content
Log in

Low-Complexity Butterfly Integration Structure for MMSE-SIC SISO Detector

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a low-complexity butterfly integration structure (LCBIS) for the minimum mean square error-soft interference cancellation (MMSE-SIC) soft-in soft-out (SISO) detector, which is widely used for MIMO systems. Unlike the conventional MMSE-SIC SISO detector which performs matrix inverse operations, the LCBIS performs butterfly integration operations with low complexity. To develop the LCBIS SISO detector, we derive an integral expression for the extrinsic information of the conventional MMSE-SIC SISO detector, and then propose a butterfly integration structure to compute the integral expression efficiently. Without matrix inverse operations, LCBIS significantly reduces the complexity of the MMSE-SIC SISO detector. In addition, simulation results show that LCBIS can offer much better BER than the other SISO detectors which do not perform matrix inverse operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space-time wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  2. Verdu, S. (1998). Multiuser detection. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  3. Fincke, U., & Pohst, M. (1985). Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation, 44(170), 463–471.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ketonen, J., Juntti, M., & Cavallaro, J. R. (2010). Performance-complexity comparison of receivers for a LTE MIMO-OFDM system. IEEE Transactions on Signal Processing, 58(6), 3360–3372.

    Article  MathSciNet  Google Scholar 

  5. Choi, J. W., Singer, A. C., & Cho, N. I. (2010). Improved linear soft-input soft-output detection via soft feedback successive interference cancellation. IEEE Transactions on Communications, 58(3), 986–996.

    Article  MathSciNet  Google Scholar 

  6. Tong, J., & Peng, L. (2010). Iterative soft compensation for OFDM systems with clipping and superposition coded modulation. IEEE Transactions on Communications, 58(10), 2861–2870.

    Article  Google Scholar 

  7. Tuchler, M., & Singer, A. C. (2011). Turbo equalization: An overview. IEEE Transactions on Information Theory, 75(2), 920–952.

    Article  MathSciNet  Google Scholar 

  8. Choi, J. (2007). A correlation based analysis for approximate MAP detectors and iterative receivers. IEEE Transactions on Wireless Commuications, 6(5), 1764–1773.

    Article  Google Scholar 

  9. Stefanov, A., & Duman, T. M. (2001). Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: System model, decoding approaches, and practical considerations. IEEE Journal of Selected Areas in Communications, 19(5), 958–968.

    Article  Google Scholar 

  10. Hochwald, B. M., & Ten Brink, S. (2003). Achieving near-capacity on a mulitiple-antenna channel. IEEE Transactionsm on Commuication, 51(3), 389–399.

    Article  Google Scholar 

  11. De Jong, Y., & Willink, T. (2005). Iterative tree search detection for MIMO wireless systems. IEEE Transactions on Commuications, 53(6), 930–935.

    Article  Google Scholar 

  12. Wang, X., & Poor, H. V. (1999). Iterative (turbo) soft interference cancellation and decoding for coded CDMA. IEEE Transactions on Commuications., 47(7), 1046–1061.

    Article  Google Scholar 

  13. Sellathurai, M., & Haykin, S. (2002). Turbo-BLAST for wireless communications: Theory and experiments. IEEE Transactions on Signal Processing, 50(10), 2538–2546.

    Article  Google Scholar 

  14. Li, Y., & Xia, X.-G. (2006). Iterative demodulation/decoding methods based on Gasuusain approximations for lattice based space-time coded systems. IEEE Transactions on Wireless Commuications, 5(8), 1976–1983.

    Article  Google Scholar 

  15. Liu, D. N., & Fitz, M. P. (2008). Low complexity affine MMSE detector for iterative detection-decoding MIMO-OFDM systems. IEEE Transactions on Commuications, 56(1), 150–158.

    Article  Google Scholar 

  16. Hogg, R. V., Craig, A., McKean, J. W. (2005). Introduction to Mathematical Statistics. New Jersey: Pearson Publishers.

  17. Robertson, P., Villebrun, E., Hoeher, P. (1995). A comparison of optimal and sub-optimal MAP decoding algorithm operating in the log domain. In Proceedings of the IEEE international conference communications, Vol. 2, pp. 1009–1013.

  18. Ten Brink, S. (2001). Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions on Commuications, 49(10), 1727–1737.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Chun Wang.

Appendix

Appendix

In this appendix, we develop the recursive relations that efficiently compute \(E\left[ {x_k \left( q \right) } \right] \) and \(\text{ var}\left[ {x_k \left( q \right) } \right] \) in (13). From (4), we obtain

$$\begin{aligned} E\left[ {x_k \left( q \right) } \right]&= \sum \limits _{\mathbf{v}_1, \ldots ,\mathbf{v}_{2Q} \in \mathrm{B}^{2Q}} \left( \left( {\sum \limits _{j=0}^{Q-1} {2^{Q-j-1}\prod _{i=0}^j {\left( {2v_{i+1} -1} \right) } } } \right) \right. \nonumber \\&\left. +\,\sqrt{-1}\left( {\sum \limits _{j=0}^{Q-1} {2^{Q-j-1}\prod _{i=0}^j {\left( {2v_{Q+i+1} -1} \right) } } } \right) \right) \cdot \prod _{i=1}^{2Q} {p(d_{2Q(k-1)+i} ( q )=v_i )} \nonumber \\ \end{aligned}$$
(22)

and

$$\begin{aligned} \text{ var}\left[ {x_k \left( q \right) } \right]&= E\left[ {\left| {x_k \left( q \right) } \right| ^{2}} \right] -\left| {E\left[ {x_k \left( q \right) } \right] } \right| ^{2} \nonumber \\&= \sum \limits _{\mathbf{v}_1, \ldots ,\mathbf{v}_{2Q} \in \mathrm{B}^{2Q}} \left| \left( {\sum \limits _{j=0}^{Q-1} {2^{Q-j-1}\prod _{i=0}^j {\left( {2v_{i+1} -1} \right) } } } \right) \right. \nonumber \\&\left. +\sqrt{-1}\left( {\sum \limits _{j=0}^{Q-1} {2^{Q-j-1}\prod _{i=0}^j {\left( {2v_{Q+i+1} -1} \right) } } } \right) \right| ^{2} \prod _{i=1}^{2Q} {p(d_{2Q(k-1)+i} \left( q \right) =v_i )} \nonumber \\&-\left| \sum \limits _{\mathbf{v}_1,\ldots ,\mathbf{v}_{2Q} \in \mathrm{B}^{2Q}} \left( \left( {\sum \limits _{j=0}^{Q-1} {2^{Q-j-1}\prod _{i=0}^j {\left( {2v_{i+1} -1} \right) } } } \right) \right. \right. \nonumber \\&\left. \left. +\sqrt{-1}\left( {\sum \limits _{j=0}^{Q-1} {2^{Q-j-1}\prod _{i=0}^j {\left( {2v_{Q+i+1} -1} \right) } } } \right) \right) \prod _{i=1}^{2Q} {p(d_{2Q(k-1)+i} \left( q \right) =v_i )} \right| ^{2} \nonumber \\ \end{aligned}$$
(23)

According to (22) and (23), computing \(E\left[ {x_k \left( q \right) } \right] \) and computing \(\text{ var}\left[ {x_k \left( q \right) } \right] \) are as follows.

1.1 Computing \(E\left[ {x_k \left( q \right) } \right] \)

Define

$$\begin{aligned}&\!\!\!\!\mu \left( s \right) \nonumber \\&\!=\!\sum \limits _{\mathbf{v}_{s+1} ,\ldots ,\mathbf{v}_Q \in \mathrm{B}^{Q-s}} {\left\{ {\left\{ {\sum \limits _{j=s}^{Q-1} {2^{Q-j-1}\prod _{i=s}^j {(2v_{i+1}\! -\!1)} } } \right\} \left\{ {\prod _{n=s}^{Q-1} {p(d_{2Q(k-1)+n+1} \left( q \right) \!=\!v_{n+1} )} } \right\} } \right\} } \nonumber \\ \end{aligned}$$
(24)

and

$$\begin{aligned}&\lambda \left( s \right) =\sum \limits _{\mathbf{v}_{s+1} ,\ldots ,\mathbf{v}_Q \in \mathrm{B}^{Q-s}} \left\{ \left\{ {\sum \limits _{j=s}^{Q-1} {2^{Q-j-1}\prod _{i=s}^j {\left( {2v_{i+1} -1} \right) } } } \right\} \right. \nonumber \\&\quad \qquad \quad \left. \times \left\{ {\prod _{n=s}^{Q-1} {p(d_{2Q(k-1)+Q+n+1} \left( q \right) =v_{n+1} )} } \right\} \right\} , \end{aligned}$$
(25)

for \(s=Q-1,Q-2,\ldots 0\). By using (24) and (25), we rewrite \(E\left[ {x_k \left( q \right) } \right] \) in (22) as

$$\begin{aligned} E\left[ {x_k \left( q \right) } \right] =\mu \left( 0 \right) +\sqrt{-1}\lambda \left( 0 \right) . \end{aligned}$$
(26)

To compute \(\mu \left( 0 \right) \) in (26), we rewrite (24) as

$$\begin{aligned}&\mu \left( s \right) = \tanh \left( {{L_a (d_{2Q(k-1)+s+1} \left( q \right) )}/2} \right) \nonumber \\&\qquad \qquad \cdot \left\{ 2^{Q-(s+1)}+\sum \limits _{v_{s+2},\ldots , v_Q \in \mathrm{B}^{Q-(s+1)}} \left\{ {\sum \limits _{j=s+1}^{Q-1} {2^{Q-j-1}\prod _{i=s+1}^j {(2v_{i+1} -1)} } } \right\} \right. \nonumber \\&\qquad \qquad \times \left. \left\{ {\prod _{n=s+1}^{Q-1} {p(d_{2Q(k-1)+n+1} \left( q \right) =v_{n+1} )} } \right\} \right\} . \end{aligned}$$
(27)

Since (24) also implies

$$\begin{aligned}&\mu \left( {s+1} \right) =\sum \limits _{v_{s+2} ,\ldots ,v_Q \in \mathrm{B}^{Q-(s+1)}} \left\{ \left\{ {\sum \limits _{j=s+1}^{Q-1} {2^{Q-j-1}\prod _{i=s+1}^j {(2v_{i+1} -1)} } } \right\} \right. \nonumber \\&\qquad \qquad \qquad \left. \times \left\{ {\prod _{n=s+1}^{Q-1} {p(d_{2Q(k-1)+n+1} \left( q \right) =v_{n+1} )} } \right\} \right\} , \end{aligned}$$
(28)

we substitute (28) into (27) and obtain the recursive relation

$$\begin{aligned} \mu \left( s \right) =\tanh \left( {{L_a (d_{2Q(i-1)+s+1} \left( q \right) )}/2} \right) \left( {2^{Q-(s+1)}+\mu \left( {s+1} \right) } \right) \end{aligned}$$
(29)

for \(s=Q-2,Q-3,\ldots ,0\). The initial value for (29) is by (24) equal to \(\mu \left( {Q-1} \right) =\tanh \left( {{L_a (d_{2Q(k-1)+Q} \left( q \right) )}/2} \right) \). By using (29) with the initial value \(\mu \left( {Q-1} \right) =\tanh \left( {{L_a (d_{2Q(k-1)+Q} \left( q \right) )}/2} \right) \), we can find \(\mu \left( s \right) \) recursively from \(s=Q-2\) to \(s=0\).

To compute \(\lambda \left( 0 \right) \) in (26), we follow the same procedure of finding (29) to obtain the recursive relation

$$\begin{aligned} \lambda \left( s \right) =\tanh \left( {{L_a (d_{2Q(k-1)+Q+s+1} \left( q \right) )}/2} \right) \left( {2^{Q-(s+1)}+\lambda \left( {s+1} \right) } \right) \end{aligned}$$
(30)

for \(s=Q-2,Q-3,\ldots ,0\). The initial value for (30) is by (25) equal to \(\lambda \left( {Q-1} \right) =\tanh \left( {{L_a (d_{2Q(k-1)+2Q} \left( q \right) )}/2} \right) \). By using (30) with the initial value \(\lambda \left( {Q-1} \right) =\tanh \left( {{L_a (d_{2Q(k-1)+2Q} \left( q \right) )}/2} \right) \), we can find \(\lambda \left( s \right) \) recursively from \(s=Q-2\) to \(s=0\).

1.2 Computing \(\text{ var}\left[ {x_k \left( q \right) } \right] \)

After \(E\left[ {x_k \left( q \right) } \right] \) is found, the next step is to find \(E\left[ {\left| {x_k \left( q \right) } \right| ^{2}} \right] \) since \(\text{ var}\left[ {x_k \left( q \right) } \right] \) in (23) is equal to \(\text{ var}\left[ {x_k \left( q \right) } \right] =E\left[ {\left| {x_k \left( q \right) } \right| ^{2}} \right] -\left| {E\left[ {x_k \left( q \right) } \right] } \right| ^{2}\). Define

$$\begin{aligned}&\alpha \left( s \right) =\sum \limits _{\mathbf{v}_{s+1} ,\ldots ,\mathbf{v}_Q \in \mathrm{B}^{Q-s}} \left\{ \left\{ {\sum \limits _{j=0}^{Q-1} {2^{Q-j-1}\prod _{i=s}^j {(2v_{i+1} -1)} } } \right\} ^{2}\right. \nonumber \\&\qquad \qquad \left. \times \left\{ {\prod _{n=s}^{Q-1} {p(d_{2Q(k-1)+n+1} \left( q \right) =v_{n+1} )} } \right\} \right\} \end{aligned}$$
(31)

and

$$\begin{aligned}&\beta \left( s \right) =\sum \limits _{\mathbf{v}_{s+1} ,\ldots ,\mathbf{v}_Q \in \mathrm{B}^{Q-s}} \left\{ \left\{ {\sum \limits _{j=0}^{Q-1} {2^{Q-j-1}\prod _{i=s}^j {\left( {2v_{i+1} -1} \right) } } } \right\} ^{2}\right. \nonumber \\&\qquad \qquad \left. \times \left\{ {\prod _{n=s}^{Q-1} {p(d_{2Q(k-1)+Q+n+1} \left( q \right) =v_{n+1} )} } \right\} \right\} , \end{aligned}$$
(32)

for \(s=Q-1,Q-2,\ldots 0\). By using (31) and (32), we rewrite \(E\left[ {\left| {x_k \left( q \right) } \right| ^{2}} \right] \) in (23) as

$$\begin{aligned} E\left[ {\left| {x_k \left( q \right) } \right| ^{2}} \right] =\alpha \left( 0 \right) +\beta \left( 0 \right) . \end{aligned}$$
(33)

To compute \(\alpha \left( 0 \right) \) in (33), we rewrite (31) as

$$\begin{aligned} \alpha \left( s \right)&= \sum \limits _{v_{s+2},\ldots , v_Q \in \mathrm{B}^{Q-(s+1)}} \left\{ 2^{2(Q-(s+1))}+2^{Q-s}\left( {\sum \limits _{j=s+1}^{Q-1} {2^{Q-j-1}\prod _{i=s+1}^j {(2v_{i+1} -1)} } } \right) \right. \nonumber \\&\left. +\left( {\sum \limits _{j=s+1}^{Q-1} {2^{Q-j-1}\prod _{i=s+1}^j {(2v_{i+1} -1)} } }\! \right) ^{2} \right\} \cdot \left\{ \! {\prod _{n=s+1}^{Q-1} {p(d_{2Q(k-1)+n+1} \left( q \right) \!=\!v_{n+1} )} } \right\} .\nonumber \\ \end{aligned}$$
(34)

Since (31) also implies

$$\begin{aligned}&\alpha \left( {s+1} \right) =\sum \limits _{v_{s+2}, \ldots ,v_Q \in \mathrm{B}^{Q-(s+1)}} \left( {\sum \limits _{j=s+1}^{Q-1} {2^{Q-j-1}\prod _{i=s+1}^j {(2v_{i+1} -1)} } } \right) ^{2}\nonumber \\&\qquad \qquad \qquad \times \left\{ {\prod _{n=s+1}^{Q-1} {p(d_{2Q(k-1)+n+1} \left( q \right) =v_{n+1} )} } \right\} , \end{aligned}$$
(35)

we substitute (35) and (28) into (34) and then obtain the recursive relation

$$\begin{aligned} \alpha \left( s \right) =2^{2(Q-(s+1))}+2^{Q-s}\mu \left( {s+1} \right) +\alpha \left( {s+1} \right) \end{aligned}$$
(36)

for \(s=Q-2,Q-3,\ldots ,0\). The initial value for (36) is by (31) equal to \(\alpha \left( {Q-1} \right) =1.\) By using (36) with the initial value \(\alpha \left( {Q-1} \right) =1\), we can find \(\alpha \left( s \right) \) recursively from \(s=Q-2\) to \(s=0\).

To compute \(\beta (0)\) in (33), we follow the same procedure of finding (36) to obtain the recursive relation

$$\begin{aligned} \beta \left( s \right) =2^{2(Q-(s+1))}+2^{Q-s}\lambda \left( {s+1} \right) +\beta \left( {s+1} \right) \end{aligned}$$
(37)

for \(s=Q-2,Q-3,\ldots ,0\). The initial value for (37) is by (32) equal to \(\beta \left( {Q-1} \right) =1\). By using (37) with the initial value \(\beta \left( {Q-1} \right) =1\), we can find \(\beta \left( s \right) \) recursively from \(s=Q-2\) to \(s=0\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HC., Huang, DJ., Leon, H.G. et al. Low-Complexity Butterfly Integration Structure for MMSE-SIC SISO Detector. Wireless Pers Commun 72, 1187–1202 (2013). https://doi.org/10.1007/s11277-013-1073-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1073-4

Keywords

Navigation