Skip to main content
Log in

Outage Probability and Ergodic Capacity Analysis for Two-Way Relaying System with Different Relay Selection Protocols

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The outage probability and ergodic capacity analysis for decode-and-forward two-way relaying system is investigated in this paper. First, the exact expressions (or bounds) of outage probability, ergodic capacity and average bidirectional ergodic capacity (ABEC) for max–min relay selection, random relay selection and direct transmission protocols are derived through theoretic analysis, and performance comparisons among different relay selection protocols are developed. Then a novel maximum average bidirectional mutual information (MABM) relay selection protocol is proposed and analyzed. Simulation results demonstrate that the derived analytical results fit well with Monte-Carlo simulations. The proposed MABM protocol can always achieve larger ABEC than other protocols while keeping low outage probability, and the MABM and max–min protocols in this paper can always achieve better performance than the max–min selection and max-sum selection in Krikidis (IEEE Trans Veh Technol 59(9):4620–4628, 2010). In addition, outage probability, ergodic capacity and ABEC performance of the proposed protocol become worse while distance becomes larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity, part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  2. Samb, D., & Yu, L. (2012). Performance analysis of amplify and forward cooperative relaying protocol in wireless communication system. Wireless Personal Communications, published online, http://www.springerlink.com/content/y466236114413758/fulltext.pdf. Accessed 27 June 2012.

  3. Huang, C., & Zhang, X. P. (2012). Performances of amplify-and-forward cooperative relay networks with different topologies. Wireless Personal Communications, published online, http://www.springerlink.com/content/m35484p351841665/fulltext.pdf. Accessed 07 April 2012.

  4. Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half-duplex fading relay channels. IEEE Journal on Selected Areas in Communications, 25(2), 379–389.

    Article  Google Scholar 

  5. Sun, X., Xu, W., Jiang, M., & Zhao, C. (2012). Opportunistic selection for decode-and-forward cooperative networks with secure probabilistic constraints. Wireless Personal Communications, published online. http://www.springerlink.com/content/c4w67x8972r232g0/fulltext.pdf. Accessed 29 July 2012.

  6. Kim, S. I., Kim, S., Kim, J. T., & Heo J. (2011). Opportunistic decode-and-forward relaying with interferences at relays. Wireless Personal Communications, published online. http://www.springerlink.com/content/nr22355gru82852t/fulltext.pdf. Accessed 11 Nov 2012.

  7. Song, L. (2011). Relay selection for two-way relaying with amplify-and-forward protocols. IEEE Transactions on Vehicular Technology, 60(4), 1954–1959.

    Article  Google Scholar 

  8. Guo, H., & Ge, J. H. (2010). Outage probability of two-way opportunistic amplify-and-forward relaying. Electronics Letters, 46(13), 918–919.

    Article  Google Scholar 

  9. Li, Y. H., Louie, R. H. Y., & Vucetic, B. (2010). Relay selection with network coding in two-way relay channels. IEEE Transactions on Vehicular Technology, 59(9), 4489–4499.

    Article  Google Scholar 

  10. Chen, C., Bai, L., Wu, B., & Choi, J. (2011). Relay selection and beamforming for cooperative bi-directional transmissions with physical layer network coding. IET Communications, 5(14), 2059–2067.

    Article  MathSciNet  Google Scholar 

  11. Jia, X. D., Yang, L. X., Fu, H. Y., Feng, B. M., & Qi, Y. F. (2012). Two-way denoise-and-forward network coding opportunistic relaying with jointing adaptive modulation relay selection criterions. IET Communications, 6(2), 194–202.

    Article  MathSciNet  Google Scholar 

  12. Ding, Z., Leung, K. K., Goeckel, D. L., & Towsley, D. (2009). On the study of network coding with diversity. IEEE Transactions on Wireless Communications, 8(3), 1247–1259.

    Article  Google Scholar 

  13. Ding, Z., Ratnarajah, T., & Leung, Kb K. (2008). On the study of network coded AF transmission protocol for wireless multiple access channels. IEEE Transactions on Wireless Communications, 7(11), 4568–4574.

    Article  Google Scholar 

  14. Ding, Z., & Leung, K. K. (2011). On the combination of cooperative diversity and network coding for wireless uplink transmissions. IEEE Transactions on Vehicular Technology, 60(4), 1590–1601.

    Article  Google Scholar 

  15. Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.

    Article  Google Scholar 

  16. Krikidis, I. (2010). Relay selection for two-way relay channels with MABC DF: A diversity perspective. IEEE Transactions on Vehicular Technology, 59(9), 4620–4628.

    Article  Google Scholar 

  17. Ji, X. D., Zheng, B. Y., Cui, J. W., Tang, S. l., & Gao, X. (2012). A study of half-duplex two-way decode-and-forward relay transmission with asymmetric traffic using superposition coding. In Proceeding of IEEE 23rd international symposium on PIMRC, Sydney, Australia (pp. 1857–1861).

  18. Jia, X. D., Zhu, H. B., Yang, L. X., & Fu, H. Y. (2012). Performance analyses of the N-Rth dual best relays opportunistic cooperation with amplify-and-forward protocols. Wireless Personal Communications, published online. http://link.springer.com/article/10.1007/s11277-012-0942-6. Accessed 09 Dec 2012.

  19. Ji, B., Song, K., Huang, Y., & Yang, L. (2012). A cooperative relay selection for two-way cooperative relay networks in Nakagami channels. Wireless Personal Communications, published online. http://link.springer.com/article/10.1007/s11277-012-0922-x. Accessed 20 Nov 2012

  20. Yang, F., Huang, M., Zhang, S., & Zhou, W. (2013). Performance analysis on two-way relay system with co-channel interference. Wireless Personal Communications, published online. http://link.springer.com/article/10.1007/s11277-013-1021-3. Accessed 02 Feb 2013.

  21. Proakis, J. (2000). Digital communications (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  22. Chen, C. J., & Wang, L. C. (2006). Enhancing coverage and capacity for multiuser MIMO system by utilizing scheduling. IEEE Transactions on Wireless Communications, 5(5), 1148–1157.

    Article  Google Scholar 

  23. Cover, T., & Thomas, J. (1991). Elements of information theory (6th ed.). New York: Wiley.

    Book  MATH  Google Scholar 

  24. Tse, D. N. C., Viswanath, P., & Zheng, L. (2004). Diversity-multiplexing tradeoff in multiple-access channels. IEEE Transactions on Information Theory, 50(9), 1859–1874.

    Article  MathSciNet  Google Scholar 

  25. Halunga, S. V., & Vizireanu, D. N. (2010). Performance evaluation for conventional and MMSE multiuser detection algorithms in imperfect reception conditions. Digital Signal Processing, 20(1), 166–178.

    Article  Google Scholar 

  26. Halunga, S. V., Vizireanu, D. N., & Fratu, O. (2010). Imperfect cross-correlation and amplitude balance effects on conventional multiuser decoder with turbo encoding. Digital Signal Processing, 20(1), 191–200.

    Google Scholar 

  27. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). New York: Academic.

    MATH  Google Scholar 

  28. David, H. A., & Nagaraja, H. N. (2003). Order statistics (3rd ed.). New York: Wiley.

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by the Major Project of Chinese National Programs for Fundamental Research and Development (2013CB329104), the National Science and Technology Specific Project (2011ZX03005-004-03), the National Natural Science Foundation of China (61071090, 61171093, 61261015), 973 Project of Jiangsu Province (BK2011027), Universities Natural Science Research Project of Jiangsu Province (11KJA510001), the project PAPD, the Postgraduate Innovation Program of Scientific Research of Jiangsu Province (CXZZ11_0384), and the Research Fund for the Doctoral Program of higher Education of China (20113223110001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhi.

Appendix

Appendix

1.1 Analysis of (11)

Let \(z_1 = | {h_{12}} |^{2}\), thus \(z_1 \) is an exponentially distributed variable with parameter \(\lambda _z =(d_1 +d_2)^{2}\), so

$$\begin{aligned} \mathcal{C }_{12\_dire}&= \int \limits _0^{+\infty } {\log _2} (1+\rho z_1 )\lambda _z e^{-\lambda _z z_1}dz_1 =\int \limits _1^{+\infty } {\frac{1}{\rho }} \log _2 (t)\lambda _z e^{-\lambda _z (t-1)/\rho }dt \nonumber \\&= -\log _2 (e)\cdot e^{\lambda _z /\rho }\mathbf{Ei}\left( {-\frac{\lambda _z}{\rho }} \right) \end{aligned}$$
(24)

where \(\mathbf{Ei} (\cdot )\) denotes the exponential-integral function and the third equality follows from Eq. 4.331.2 in [27]. Recall that the exponential-integral function can have the following series representation from Eq. 8.214.1 in [27]

$$\begin{aligned} \mathbf{Ei}\left( x \right) =\mathbb{C }+\ln (-x)+\sum _{k=1}^\infty {\frac{x^{k}}{k\cdot k!}} ,\quad x<0 \end{aligned}$$
(25)

where \(\mathbb{C }\) is Euler’s constant. Thus for high SNR, we can get Ei \((x )\approx \mathbb{C }+\ln (-x),x\rightarrow -0\). For larger SNR, we can have the following approximation

$$\begin{aligned} \mathcal{C }_{12\_dire} \approx -\log _2 (e)\cdot e^{\lambda _z /\rho }\left[ {\mathbb{C }+\ln \left( \frac{\lambda _z}{\rho }\right) } \right] \approx -\log _2 (e)\cdot \left[ {\mathbb{C }+\ln \left( \frac{\lambda _z}{\rho }\right) } \right] \end{aligned}$$
(26)

1.2 Analysis of (12)

Let \(z_1 =| {h_{12}} |^{2}, z_2 = | {h_{21}} |^{2}\), thus \(z_1 \) and \(z_2 \) are independent exponentially distributed variable and both with parameter \(\lambda _z =(d_1 +d_2 )^{2}\), so

$$\begin{aligned} \mathcal{C }_{ave\_dire}&= \int \limits _0^{+\infty } {\int \limits _0^{+\infty } {\frac{1}{2}}} \log \left[ {\left( {1+\rho z_1} \right) \left( {1+\rho z_2} \right) } \right] \lambda _z e^{-\lambda _z z_1}\lambda _z e^{-\lambda _z z_2}dz_1 dz_2 \nonumber \\&= \frac{1}{2}\int \limits _0^{+\infty } {\int \limits _0^{+\infty } {\log \left[ {\left( {1+\rho z_1} \right) } \right] }} \times \lambda _z e^{-\lambda _z z_1}\lambda _z e^{-\lambda _z z_2}dz_2 dz_1 \nonumber \\&\quad +\frac{1}{2}\int \limits _0^{+\infty } {\int \limits _0^{+\infty } {\log \left[ {\left( {1+\rho z_2} \right) } \right] }} \times \lambda _z e^{-\lambda _z z_1}\lambda _z e^{-\lambda _z z_2}dz_1 dz_2 \nonumber \\&\approx -\log _2(e)\cdot \left[ {\mathbb{C }+\ln (\frac{\lambda _z}{\rho })} \right] \end{aligned}$$
(27)

1.3 Analysis of (14)

Let \(x= | {h_{1R^{*}}} |^{2},\, y= | {h_{2R^{*}}} |^{2}\), \(\varepsilon ={(2^{r}-1)}/\rho \), thus \(x\) and \(y\) are exponentially distributed variables with parameters \(\lambda _x =d_1^2 \) and \(\lambda _y =d_2^2 \), respectively, so

$$\begin{aligned} \mathcal{C }_{12\_rand}&= \int \limits _\varepsilon ^{+\infty } {\log (1+\rho y)} \lambda _y e^{-\lambda _y y}dy\nonumber \\&= \frac{\log _2 (e)}{\rho }\lambda _y e^{{\lambda _y}/\rho }2^{r}\int \limits _1^{+\infty } {(\ln 2^{r}+\ln t)} e^{{-\lambda _y 2^{r}t}/\rho }dt \end{aligned}$$
(28)

Similar to analysis of (11), we can get

$$\begin{aligned} \mathcal{C }_{12\_rand}&\approx \log _2 (e)\cdot e^{{\lambda _y }/\rho } \left[ \ln 2^{r}e^{{-\lambda _y 2^{r}}/\rho }-\mathbb{C }-\ln \left( \frac{\lambda _y 2^{r}}{\rho }\right) \right] \nonumber \\&\approx -\log _2 (e)\cdot \left[ {\mathbb{C }+\ln \left( \frac{\lambda _y}{\rho }\right) } \right] \end{aligned}$$
(29)

where the lower limit of integral is \(\varepsilon \) because of the successful decoding condition \( | {h_{R^{*}2}} |^{2}= | {h_{2R^{*}}} |^{2}\ge \varepsilon \) mentioned before.

1.4 Analysis of (18)

Let \(x=| {h_{1R_i}} |^{2},y=| {h_{2R_i}} |^{2}, \xi =\mathop {\max }\nolimits _{R_i \in F} \min [ {| {h_{1R_i}} |^{2},| {h_{2R_i}} |^{2}} ]\), thus the PDF of \(\xi \) can be shown as [28] \(f_\xi (\xi )=N(\lambda _x+\lambda _y )e^{-(\lambda _x+\lambda _y)\xi }[{1-e^{-(\lambda _x+\lambda _y)\xi }} ]^{N-1}\), where \(\lambda _x =d_1^2 \) and \(\lambda _y =d_2^2 \) represent distributed parameters of exponentially distributed variables \(| {h_{1R_i}} |^{2}\) and \(| {h_{2R_i}} |^{2}\), respectively.

If we choose \(\mathop {\max }\nolimits _{R_i \in F} \min [ { | {h_{1R_i}} |^{2}, | {h_{2R_i}} |^{2}} ]\) as \( | {h_{2R^{*}}} |^{2}\) in the calculation of ergodic capacity every time when we choose \(R^{*}\), i.e., let \( | {h_{2R^{*}}} |^{2}=\xi \), we can get the lower bound,

$$\begin{aligned} \mathcal{C }_{12\_mm}&\ge \mathcal{C }_{12\_mm\_down}= \sum _{N=0}^L {\left\{ {\mathcal{C }_{mm1}} \right\} \cdot P\left( {\mathbf{N}=N} \right) }\end{aligned}$$
(30)
$$\begin{aligned} \mathcal{C }_{mm1}&= \int \limits _\varepsilon ^{+\infty } {\log (1+\rho \xi )} f_\xi (\xi )d\xi \nonumber \\&= \int \limits _{2^{r}}^{+\infty } {\log t} \frac{1}{\rho }N(\lambda _x +\lambda _y)e^{-(\lambda _x +\lambda _y)(t-1)/\rho }\left[ {1-e^{-(\lambda _x +\lambda _y)(t-1)/\rho }} \right] ^{N-1}dt\qquad \end{aligned}$$
(31)

Applying binomial expansion, we can have

$$\begin{aligned} \mathcal{C }_{mm1}&= \int \limits _{2^{r}}^{+\infty } {\log t} \frac{1}{\rho }N(\lambda _x +\lambda _y)e^{-(\lambda _x+\lambda _y )(t-1)/\rho }\left[ {\sum _{i=0}^{N-1} {C_{N-1}^i} (-1)^{i}e^{-(\lambda _x+\lambda _y)(t-1)i/\rho }} \right] dt \nonumber \\&\approx \frac{N\log _2 (e)}{\rho }(\lambda _x +\lambda _y)\sum _{i=0}^{N-1} {C_{N-1}^i} (-1)^{i}\int \limits _{2^{r}}^{+\infty } {e^{-(\lambda _x +\lambda _y)(1+i)t/\rho }} \ln tdt \end{aligned}$$
(32)

For

$$\begin{aligned} \int \limits _{2^{r}}^{+\infty } {e^{-(\lambda _x +\lambda _y )(1+i)t/\rho }} \ln tdt&= 2^{r}\int \limits _1^{+\infty } {e^{-(\lambda _x +\lambda _y)(1+i)2^{r}t/\rho }} (\ln t+\ln 2^{r})dt \nonumber \\&= 2^{r}\left( {-\frac{1}{\mu }} \right) \mathbf{Ei}\left( {-\mu } \right) +2^{r}\ln 2^{r}\frac{1}{\mu }e^{-\mu } \end{aligned}$$
(33)

where \(\mu =(\lambda _x +\lambda _y)2^{r}(1+i)/\rho \), combining (32) and (33),

$$\begin{aligned} \mathcal{C }_{mm1}&= N\log _2 (e)\sum _{i=0}^{N-1} {C_{N-1}^i} (-1)^{i+1}\frac{1}{i+1}\left[ {\mathbf{Ei}\left( {-\mu } \right) -\ln 2^{r}e^{-\mu }} \right] \nonumber \\&\approx N\log _2 (e)\sum _{i=0}^{N-1} {C_{N-1}^i} (-1)^{i+1}\frac{1}{i+1}\nonumber \\&\times \left[ \mathbb{C }+\ln \left( {\frac{(\lambda _x +\lambda _y)2^{r}(1+i)}{\rho }} \right) -\ln 2^{r}e^{-\frac{(\lambda _x +\lambda _y)2^{r}(1+i)}{\rho }}\right] =-\log _2 (e)\nonumber \\&\times \left[ {\mathbb{C }+\ln (\frac{\lambda _x +\lambda _y }{\rho })} \right] +N\cdot \log _2 (e)\cdot \sum _{i=0}^{N-1} {C_{N-1}^i} (-1)^{i+1}\frac{1}{i+1}\ln (1+i)\qquad \end{aligned}$$
(34)

The last equality follows from Eq. 0.155.1 in [27].

1.5 Analysis of (19)

Let \(x= | {h_{1R_i}} |^{2}, y= | {h_{2R_i}} |^{2}, \eta =\mathop {\max }\nolimits _{R_i \in F} \max [ { | {h_{1R_i}} |^{2}, | {h_{2R_i}} |^{2}} ]\), thus the PDF of \(\eta \) can be shown as [28] \(f_\eta (\eta )=N ({\lambda _x e^{-\lambda _x \eta }+\lambda _y e^{-\lambda _y \eta }-(\lambda _x +\lambda _y )e^{-(\lambda _x+\lambda _y)\eta }} ) [ (1-e^{-\lambda _x \eta }) (1-e^{-\lambda _y \eta }) ]^{N-1}\), where \(\lambda _x =d_1^2 \) and \(\lambda _y =d_2^2 \) represent distributed parameters of exponentially distributed variables \( | {h_{1R_i}} |^{2}\) and \( | {h_{2R_i}} |^{2}\), respectively.

If we choose \(\mathop {\max }\nolimits _{R_i \in F} \max [ { | {h_{1R_i}} |^{2}, | {h_{2R_i}} |^{2}} ]\) as \( | {h_{2R^{*}}} |^{2}\) in the calculation of ergodic capacity every time when we choose \(R^{*}\), i.e., let \( | {h_{2R^{*}}} |^{2}=\eta \), we can get the upper bound,

$$\begin{aligned} \mathcal{C }_{12\_mm} \le \mathcal{C }_{12\_mm\_up1} =\sum _{N=0}^L {\left\{ {\mathcal{C }_{mm}^*} \right\} P\left( {\mathbf{N}=N} \right) } \end{aligned}$$
(35)

When \(\lambda _x <\lambda _y \),

$$\begin{aligned} \mathcal{C }_{mm}^*&= \int \limits _\varepsilon ^{+\infty } {\log (1+\rho \eta )} f_\eta (\eta )d\eta \nonumber \\&\le \int \limits _\varepsilon ^{+\infty } {\log } (1+\rho \eta )N(\lambda _x e^{-\lambda _x \eta }+\lambda _y e^{-\lambda _y \eta }-(\lambda _x +\lambda _y)e^{-(\lambda _x+\lambda _y)\eta }) \nonumber \\&\left[ {(1-e^{-\lambda _y \eta })} \right] ^{2N-2}d\eta = \int \limits _\varepsilon ^{+\infty } N \log (1+\rho \eta )\lambda _x e^{-\lambda _x \eta }\left[ {(1-e^{-\lambda _y \eta })} \right] ^{2N-2}d\eta \nonumber \\&\quad +\int \limits _\varepsilon ^{+\infty } N \log (1+\rho \eta )\lambda _y e^{-\lambda _y \eta }\left[ {(1-e^{-\lambda _y \eta })} \right] ^{2N-2}d\eta \nonumber \\&\quad -\int \limits _\varepsilon ^{+\infty } N \log (1+\rho \eta )(\lambda _x +\lambda _y)e^{-(\lambda _x+\lambda _y)\eta }\left[ {(1-e^{-\lambda _y \eta })} \right] ^{2N-2}d\eta \nonumber \\&= \mathcal{C }_{mm2} +\mathcal{C }_{mm3} +\mathcal{C }_{mm4} \end{aligned}$$
(36)

Similar to the analysis of (18), we can have

$$\begin{aligned}&\mathcal{C }_{mm2} \approx N\cdot \log _2 (e)\cdot \lambda _x \sum _{i=0}^{2N-2} {C_{2N-2}^i} (-1)^{i}\frac{1}{\lambda _x +\lambda _y i}\left[ {-\mathbb{C }-\ln \left( \frac{\lambda _x}{\rho }+\frac{\lambda _y}{\rho }i\right) } \right] \qquad \end{aligned}$$
(37)
$$\begin{aligned}&\mathcal{C }_{mm3} \approx N\cdot \log _2 (e)\cdot \sum _{i=0}^{2N-2} {C_{2N-2}^i} (-1)^{i}\frac{1}{1+i}\left[ {-\mathbb{C }-\ln \left( \frac{\lambda _y}{\rho }+\frac{\lambda _y}{\rho }i\right) } \right] \end{aligned}$$
(38)
$$\begin{aligned}&\mathcal{C }_{mm4} \approx N\cdot \log _2 (e)\cdot (\lambda _x +\lambda _y)\sum _{i=0}^{2N-2} {C_{2N-2}^i} (-1)^{i}\frac{1}{\lambda _x +\lambda _y +\lambda _y i}\nonumber \\&\quad \times \left[ {\mathbb{C }+\ln (\frac{\lambda _x +\lambda _y}{\rho }+\frac{\lambda _y}{\rho }i)} \right] \end{aligned}$$
(39)

1.6 Analysis of (20)

Like (19), we can get (40)–(42) for \(\lambda _x \ge \lambda _y \),

$$\begin{aligned} \mathcal{C }_{mm5}&\approx N\cdot \log _2 (e)\cdot \sum _{i=0}^{2N-2} {C_{2N-2}^i} (-1)^{i}\frac{1}{1+i}\left[ {-\mathbb{C }-\ln (\frac{\lambda _x}{\rho }+\frac{\lambda _x }{\rho }i)} \right] \end{aligned}$$
(40)
$$\begin{aligned} \mathcal{C }_{mm6}&\approx N\cdot \log _2 (e)\cdot \lambda _y \sum _{i=0}^{2N-2} {C_{2N-2}^i} (-1)^{i}\frac{1}{\lambda _y +\lambda _x i}\left[ {-\mathbb{C }-\ln (\frac{\lambda _y}{\rho }+\frac{\lambda _x}{\rho }i)} \right] \end{aligned}$$
(41)
$$\begin{aligned} \mathcal{C }_{mm7}&\approx N\cdot \log _2 (e)\cdot (\lambda _x +\lambda _y)\sum _{i=0}^{2N-2} {C_{2N-2}^i} (-1)^{i}\frac{1}{\lambda _x +\lambda _y +\lambda _x i}\nonumber \\&\times \left[ {\mathbb{C }+\ln (\frac{\lambda _x +\lambda _y}{\rho }+\frac{\lambda _x}{\rho }i)} \right] \end{aligned}$$
(42)

1.7 Analysis of (23)

Let \(x_1 =\rho | {h_{1R_i}} |^{2},\,y_1 =\rho | {h_{2R_i}} |^{2},\,z=(1+x_1)(1+y_1)\), thus \(x_1 \) and \(y_1 \) are exponentially distributed variables with parameters \(\lambda _1 =\frac{d_1^2}{\rho },\, \lambda _2 =\frac{d_2^2}{\rho }\), respectively, so the CDF of \(z\) can be shown as

$$\begin{aligned} P(\mathrm{z}<z)&= ~~~~~~\int \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\int \limits _{(1+x_1)(1+y_1)<z} {\lambda _1} e^{-\lambda _1 x_1}\lambda _2 e^{-\lambda _2 y_1}dx_1 dy_1 \nonumber \\&= \int \limits _0^{z-1} {\int \limits _0^{\frac{z-1-y_1}{1+y_1}} {\lambda _1}} e^{-\lambda _1 x_1 }\lambda _2 e^{-\lambda _2 y_1}dx_1 dy_1 \nonumber \\&= 1-e^{-\lambda _2 (z-1)}-\lambda _2 e^{\lambda _1 +\lambda _2 }\int \limits _1^z {e^{-\frac{\lambda _1 z}{t}-\lambda _2 t}} dt \end{aligned}$$
(43)

Let \(f(z)=1-e^{-\lambda _2 (z-1)}-\lambda _2 e^{\lambda _1 +\lambda _2}\int \nolimits _1^z {e^{-\frac{\lambda _1 z}{t}-\lambda _2 t}} dt\), \(g(z)=1-e^{-\lambda _1 \lambda _2 z}\). Although currently we are not able to find the formal proof for this property, Fig. 11 shows that \(f(z)\approx g(z)\) for high SNR. Thus we can regard \(z\) as an exponentially distributed variable with parameter \(\lambda _1 \lambda _2\) approximately.

$$\begin{aligned} P(\mathrm{z}<z)\approx 1-e^{-\lambda _1 \lambda _2 z} \end{aligned}$$
(44)

So we can have

$$\begin{aligned} \mathcal{C }_{ave\_mabm}&\approx \sum _{N=0}^L {\left\{ {\mathcal{C }_{mabm}} \right\} \cdot P\left( {\mathbf{N}=N} \right) }\end{aligned}$$
(45)
$$\begin{aligned} \mathcal{C }_{mabm}&= \int \limits _{2^{2r}}^{+\infty } {\frac{1}{2}} \log z\cdot N\lambda _1 \lambda _2 e^{-\lambda _1 \lambda _2 z}\left( {1-e^{-\lambda _1 \lambda _2 z}} \right) ^{N-1}dz \end{aligned}$$
(46)

Like analysis of (18), we can get

$$\begin{aligned} \mathcal{C }_{mabm} \approx \frac{N}{2}\log _2 (e)\cdot \sum _{i=0}^{N-1} {C_{N-1}^i (-1)^{i}} \frac{1}{1+i}\left\{ {-\mathbb{C }-\ln \left[ {\lambda _1 \lambda _2 (1+i)} \right] } \right\} \end{aligned}$$
(47)
Fig. 11
figure 11

Comparison between \(f(z)\) and \(g(z)\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhi, H., Yang, L. & Zhu, H. Outage Probability and Ergodic Capacity Analysis for Two-Way Relaying System with Different Relay Selection Protocols. Wireless Pers Commun 72, 2047–2067 (2013). https://doi.org/10.1007/s11277-013-1135-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1135-7

Keywords

Navigation