Skip to main content
Log in

Performance of Cognitive Radios in Dynamic Fading Channels Under Primary Outage Constraint

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This article investigates the performance of a cognitive user in a dynamic fading environment. The cognitive user communicates, using a spectrum-sharing technology, over a channel reserved to a primary user (PU). The transmit power of the cognitive user satisfies the outage probability constraint of the PU. The channels of the primary and cognitive users experience independent and non-identically distributed fading models. Nakagami-\(m\) and hyper-Nakagami-\(m\) channel fading models are specifically considered. The cognitive user’s mean transmit power, channel capacity, and bit error rate are derived for this setup. In addition, numerical results are presented to verify the theoretical analysis and investigate the effects of the parameters of the communication environment on the performance measures of the cognitive user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Federal Communications Commission. (2002). Spectrum Policy Task Force Report. ET Docket No. 02–135.

  2. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden.

  3. Kang, X., Zhang, R., Liang, Y.-C., & Garg, H. K. (2009). Optimal power allocation for cognitive radio under primary user’s outage loss constraint. In IEEE international conference on communications (ICC), pp. 1–5.

  4. Zhang, R., Cui, S., & Liang, Y.-C. (2009). On ergodic sum capacity of fading cognitive multiple-access and broadcast channels. IEEE Transactions on Information Theory, 55(11), 5161–5178.

    Article  MathSciNet  Google Scholar 

  5. Ban, T. W., Choi, W., Jung, B. C., & Sung, D. K. (2009). Multi-user diversity in a spectrum sharing system. IEEE Transactions on Wireless Communications, 8(1), 102–106.

    Article  Google Scholar 

  6. Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.

    Article  Google Scholar 

  7. Ekin, S., Yilmaz, F., Celebi, H., Qaraqe, K. A., Alouini, M.-S., & Serpedin, E. (2012). Capacity limits of spectrum-sharing systems over hyper-fading channels. Wireless Communications and Mobile Computing, 12(16), 1471–1480.

    Article  Google Scholar 

  8. Zhang, R., & Liang, Y.-C. (2010). Investigation on multiuser diversity in spectrum sharing based cognitive radio networks. IEEE Communications Letters, 14(2), 133–135.

    Article  Google Scholar 

  9. Li, D. (2010). Performance analysis of uplink cognitive cellular networks with opportunistic scheduling. IEEE Communications Letters, 14(9), 827–829.

    Article  Google Scholar 

  10. Farraj, A. K., & Hammad, E. M. (2013). Impact of quality of service constraints on the performance of spectrum-sharing cognitive users. Wireless Personal Communications, 69(2), 673–688.

    Article  Google Scholar 

  11. Goldsmith, A. (2005). Wireless Communications (1st ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  12. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  13. Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions: With formulas, graphs, and mathematical tables, Vol. 55. Dover Publications, Mineola, New York.

  14. Cover, T. M., & Thomas, J. A. (1991). Elements of information theory (1st ed.). New York: Wiley.

    Book  MATH  Google Scholar 

  15. Sklar, B. (1988). Digital communications: fundamentals and applications (1st ed.). Englewood Cliffs, New Jersey: Prentice Hall.

    MATH  Google Scholar 

  16. Abdi, A., Lau, W., Alouini, M.-S., & Kaveh, M. (2003). A new simple model for land mobile satellite channels: first-and second-order statistics. IEEE Transactions on Wireless Communications, 2(3), 519–528.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah K. Farraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farraj, A.K., Ekin, S. Performance of Cognitive Radios in Dynamic Fading Channels Under Primary Outage Constraint. Wireless Pers Commun 73, 637–649 (2013). https://doi.org/10.1007/s11277-013-1207-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1207-8

Keywords

Navigation