Skip to main content
Log in

A Novel Nonlinear Constellation Precoding for OFDM Systems with Subcarrier Grouping

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposed a novel nonlinear constellation precoding (NCP) technique based on maximum distance separable (MDS) codes in orthogonal frequency-division multiplexing (OFDM) systems. The proposed method envisage to maximize both the diversity and coding gains for any number of diversity channels and desired diversity orders. The novel NCP technique combined with subcarrier groping in OFDM systems to replace the most existing linear constellation precoding (LCP) scheme. In this scheme, the full set of subcarriers are splitted into smaller groups and the codewords are constructed from \(q\) point constellation mapper with MDS encoder. The maximum-likelihood (ML) decoder is used in the most existing signal space diversity technique which is replaced by diversity channel selection (DCS) to reduce the decoding complexity with the cost of marginal performance loss. The effect of the Inter-carrier interference (ICI) introduced by the carrier frequency offsets (CFO) also analyzed in the proposed OFDM system. The superiority of the proposed novel NCP technique over the previously proposed designs is verified by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Le, K. N. (2008). Inter-carrier interference power of OFDM in a uniform scattering channel. Computer Communications, 31, 4130–4135.

    Article  Google Scholar 

  2. Chang, D.-C., Lai Y.-L., Hsu Y.-C. (2010). ICI compensation for interleaved OFDMA with carrier frequency offsets. In Proceedings of the IEEE international symposium on broadband multimedia systems and broadcasting (BMSB), pp. 1–5, 2010.

  3. Le, K. N. (2008). Insights on ICI and its effects on performance of OFDM systems. Digital Signal Processing, 18(6), 876–884.

    Article  Google Scholar 

  4. Le, K. N. (2008). Bounds on inter-carrier interference power of OFDM in a Gaussian scattering channel. Wireless Personal Commununications, 47(3), 355–362.

    Article  Google Scholar 

  5. Le, K. N. (2010). BER of OFDM in Rayleigh fading environments with selective diversity. Wireless Communication and Mobile Computing, 10(2), 306–311.

    Google Scholar 

  6. Hong, Z., Zhang, L. & Thibault, L. (2011). Iterative ICI cancellation for OFDM receiver with residual carrier frequency offset. In Proceedings of the IEEE vehicular technology conference (VTC Fall), pp. 1–5, 2011.

  7. Le, K. N., & Dabke, K. P. (2010). BER of OFDM with diversity and pulse shaping in Rayleigh fading environments. Digital Signal Processing, 20(6), 1687–1696.

    Article  Google Scholar 

  8. Le, K. N. (2011). Additional insight on SAGE-based carrier and residual frequency offset estimations in OFDM systems. Wireless Personal Commununications, 60(4), 687–694.

    Article  Google Scholar 

  9. Mahesh, R. U., & Chaturvedi, A. K. (2010). Closed form BER expressions for BPSK OFDM systems with frequency offset. IEEE Communications Letters, 14(8), 731–733.

    Article  Google Scholar 

  10. Saxena, R. & Joshi, H.D. (2012). ICI reduction in OFDM system using IMBH pulse shapes, wireless personal communication, Springer Publication, pp. 1–17, published online: December 2012. doi:10.1007/s11277-012-0978-7.

  11. Boutros, J., & Viterbo, E. (1998). Signal space diversity: A power- and bandwidth-efficient diversity technique for the Rayleigh fading channel. IEEE Transactions on, Information Theory, 44, 1453–1467.

    Article  MathSciNet  MATH  Google Scholar 

  12. Giraud, X., Boutillon, E., & Belfiore, J. C. (1997). Algebraic tools to build modulation schemes for fading channels. IEEE Transactions on, Information Theory, 43, 938–952.

    Article  MathSciNet  MATH  Google Scholar 

  13. Goeckel, D. L., & Ananthaswamy, G. (2002). On the design of multidimensional signal sets for OFDM systems. IEEE Transactions on Communications, 50, 442–452.

    Article  Google Scholar 

  14. McCloud, M. L. (2005). Analysis and design of short block OFDM spreading matrices for use on multipath fading channels. IEEE Transactions on Communications, 53, 656–665.

    Article  Google Scholar 

  15. El Gamal, H., & Hammons, A. R. (2001). A new approach to layered space-time coding and signal processing. IEEE Transactions on, Information Theory, 47, 2321–2334.

    Article  MATH  Google Scholar 

  16. El Damen, M. O., Abed-Meraim, K., & Belfiore, J. C. (2002). Diagonal algebraic space-time block codes. IEEE Transactions on, Information Theory, 48, 628–636.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, H., & Xia, X.-G. (2008). Optimal normalized diversity product of \(2\times 2\) lattice-based diagonal space-time codes from QAM signal constellations. IEEE Transactions on, Information Theory, 54, 1814–1818.

    Article  MathSciNet  Google Scholar 

  18. Lamy, C., & Boutros, J. (2000). On random rotations diversity and minimum MSE decoding of lattices. IEEE Transactions on, Information Theory, 46, 1584–1589.

    Article  MATH  Google Scholar 

  19. Liu, Z., Xin, Y., & Giannakis, G. B. (2002). Space-time-frequency coded OFDM over frequency-selective fading channels. IEEE Transactions on, Signal Processing, 50, 2465–2476.

    Article  Google Scholar 

  20. Wang, Z., & Giannakis, G. B. (2003). Complex-field coding for OFDM over fading wireless channels. IEEE Transactions on, Information Theory, 49, 707–720.

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, R., & Petropulu, A. P. (2005). Linear precoding assisted blind channel estimation for OFDM systems. IEEE Transactions on, Vehicular Technology, 54, 983–995.

    Article  Google Scholar 

  22. Liu, Z., Xin, Y., & Giannakis, G. B. (2001). Linear constellation-precoding for OFDM with maximum multipath diversity and coding gains. In Proceedings of the 35 Asilomar conference on signals, systems and computers, pp. 1445–1449.

  23. Tran, N. H., Nguyen, H. H., & Tho, Le-Ngoc. (2007). Subcarrier grouping for OFDM with linear constellation precoding over multipath fading channels. IEEE Transactions on, Vehicular Technology, 56, 3607–3613.

    Article  Google Scholar 

  24. Shang, Y., Wang, D., & Xia, T. X.-G. (2010). Signal space diversity techniques with fast decoding based on MDS codes. IEEE Transactions on, Communications, 58, 2525–2536.

    Article  Google Scholar 

  25. Seyedi, A. (2006). Multi-QAM modulation: A low-complexity full-rate diversity scheme. In Proceedings of the IEEE international conference on, communications, pp. 1470–1475.

  26. Simon, M. K., & Aluini, M.-S. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.

    Google Scholar 

  27. Raja, M., & Muthuchidambaranathan, P. (2010). BER performance of SVD-based transmit beamforming with various modulation techniques. In Proceedings of 5th IEEE international conference on industrial and, information systems (ICIIS-2010), pp. 155–160, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raja, M., Muthuchidambaranathan, P. A Novel Nonlinear Constellation Precoding for OFDM Systems with Subcarrier Grouping. Wireless Pers Commun 73, 867–884 (2013). https://doi.org/10.1007/s11277-013-1221-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1221-x

Keywords

Navigation