Skip to main content
Log in

SER Performance of Amplify-and-Forward Cooperative Diversity Over Asymmetric Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the performance of amplify-and-forward (AF) cooperative diversity is analyzed over asymmetric fading channels. The source–relay and the relay–destination links experience Rayleigh fading while the source–destination link is subject to generalized Gamma fading. First, the probability density function (PDF) and the moment generating function (MGF) of the source–relay–destination link and the MGF of the source–destination link are derived. Then, the symbol error rate (SER) is determined based on the MGF of the total end-to-end signal-to-noise ratio (SNR). Moreover, the SER performance of N-relay assisted AF cooperative diversity is illustrated for M-ary phase shift keying (M-PSK) and M-ary quadrature amplitude modulation (M-QAM). Based on the derived MGF expressions, the numerical results are obtained by varying the modulation types and channel parameters for different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Laneman, J. N., Wornell, G. W., & Tse, D. N. C. (2001). An efficient protocol for realizing cooperative diversity in wireless networks. In Proceedings of IEEE international symposium on information theory, p. 294. June 2001.

  2. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  3. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.

    Article  Google Scholar 

  4. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  5. Ikki, S., & Ahmed, M. H. (2007). Performance analysis of cooperative diversity wireless networks over Nakagami-\(m\) fading channel. IEEE Communications Letters, 11(4), 334–336.

    Article  Google Scholar 

  6. Farhadi, G., & Beaulieu, N. C. (2008). On the performance of amplify-and-forward cooperative systems with fixed gain relays. IEEE Transactions on Wireless Communications, 7(5), 1851–1856.

    Article  Google Scholar 

  7. Su, W., Sadek, A. K., & Liu, K. J. R. (2008). Cooperative communication protocols in wireless networks: Performance analysis and optimum power allocation. Wireless Personal Communications, 44(2), 181–217.

    Article  Google Scholar 

  8. Ikki, S., & Ahmed, M. H. (2011). Multi-branch decode-and-forward cooperative diversity networks performance analysis over Nakagami-m fading channels. IET Communications, 5(6), 872–878.

    Google Scholar 

  9. Samb, D., & Yu, L. (2012). Performance analysis of amplify and forward cooperative relaying protocol in wireless communication system. Wireless Personal Communications. doi:10.1007/s11277-012-0732-1.

  10. Ko, K., & Woo, C. (2013). More accurate ASER bound for opportunistic amplify-and-forward relay systems. Wireless Personal Communications, 68(3), 609–617.

    Article  MathSciNet  Google Scholar 

  11. Huang, C., & Zhang, X.-P. (2012). Performances of amplify-and-forward cooperative relay networks with different topologies. Wireless Personal Communications. doi:10.1007/s11277-012-0590-x.

  12. Halunga, S. V., & Vizireanu, N. (2010). Performance evaluation for conventional and MMSE multiuser detection algorithms in imperfect reception conditions. Digital Signal Processing, 20(1), 166–178.

    Article  Google Scholar 

  13. Xu, W., Zhang, J., & Zhang, P. (2010). Performance analysis of dual-hop amplify-and-forward relay system in mixed Nakagami-\(m\) and Rician fading channels. Electronics Letters, 46(17), 1231–1232.

    Article  Google Scholar 

  14. Suraweera, H. A., Karagiannidis, G. K., & Smith, P. J. (2009). Performance analysis of the dual-hop asymmetric fading channel. IEEE Transactions on Wireless Communications, 8(6), 2783–2788.

    Article  Google Scholar 

  15. Kapucu, N., Bilim, M., & Develi, I. (2012). Outage probability analysis of dual-hop decode-and-forward relaying over mixed Rayleigh and generalized Gamma fading channels. Wireless Personal Communications. doi:10.1007/s11277-012-0853-6.

  16. Majhi, S., Nasser, Y., Helard, J. F., & Helard, M. (2010). Performance analysis of repetition-based decode-and-forward relaying over asymmetric fading channels. In Proceedings of IEEE international conference PIMRC (Vol. 21, pp. 362–367).

  17. Coulson, A. J., Williamson, A. G., & Vaughan, R. G. (1998). Improved fading distribution for mobile radio. IEE Proceedings-Communications, 145(3), 197–202.

    Article  Google Scholar 

  18. Kapucu, N. (2012). Derivation of new mathematical expressions for performance analysis of cooperative communication systems over different fading channels. Master’s thesis, Graduate School of Natural and Applied Sciences, Erciyes University (in Turkish).

  19. Nasri, A., Schober, R., & Blake, I. F. (2011). Performance and optimization of amplify-and-forward cooperative diversity systems in generic noise and interference. IEEE Transactions on Wireless Communications, 10(4), 1132–1143.

    Article  Google Scholar 

  20. Karagiannidis, G. K., Tsiftsis, T. A., & Mallik, R. K. (2006). Bounds for multihop relayed communications in Nakagami-\(m\) fading. IEEE Transactions on Communications, 54(1), 18–22.

    Article  Google Scholar 

  21. Hasna, M. O., & Alouini, M.-S. (2004). Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Transactions on Communications, 52(1), 130–135.

    Article  Google Scholar 

  22. Simon, M. K., & Alouini, M.-S. (2000). Digital communication over fading channels (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  23. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integrals and series (Vol. 1). London: Gordon and Breach.

    Google Scholar 

  24. Gradshteyn, I. S., & Rzyhik, I. M. (2007). Table of integrals, series and products (7th ed.). London: Academic Press.

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Projects Coordinating Office of Erciyes University (EU-BAP, Project No: FBY-11-3682). The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuri Kapucu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapucu, N., Bilim, M. & Develi, I. SER Performance of Amplify-and-Forward Cooperative Diversity Over Asymmetric Fading Channels. Wireless Pers Commun 73, 1117–1127 (2013). https://doi.org/10.1007/s11277-013-1251-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1251-4

Keywords

Navigation