Skip to main content
Log in

Probabilistic Data Aggregation in Information-based Clustered Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Efficient data aggregation helps in achieving maximum performance for complex interactive and sensing applications. In our proposed work, we have considered a heterogeneous sensor network which is partitioned into clusters. Each cluster is further divided into smaller information-based groups (also called similar groups) by the local processing center (LPC). The LPC acts as a cluster head and computes the probabilistic similarity of sensors by exploiting resemblance in the pattern of their sensed data. It further schedules the active and sleep duration of sensor nodes, such that only single node from every group remains active to participate in the aggregation cycle. The LPC gathers multi-characteristic dataset from the active clustered nodes and processes them by using probabilistic aggregation model. The proposed model normalizes the multi-characteristic data for deriving relative weights of each of the characteristic attribute. Finally, the aggregated information is transmitted to the global processing center. Our protocol is evaluated with wide range of performance metrics which includes aggregation gain, information accuracy, aggregation miss ratio, network lifetime and energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akyildiz, I. F., & Weilian, S. (2002). Wireless sensor networks: A survey. Journal of Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  2. Mhatre, V., Rosenberg, C. (2004). Homogeneous vs heterogeneous clustered sensor networks: a comparative study. The IEEE International Conference on Communications, 3646–3651.

  3. Wang, Q., & Kenan, X. (2006). On lifetime-oriented device provisioning in heterogeneous wireless sensor networks: Approaches and challenges. IEEE Network, 20(3), 26–33.

    Article  MATH  Google Scholar 

  4. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7, 537–568.

    Article  Google Scholar 

  5. Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14, 28–44.

    Article  Google Scholar 

  6. Pal, R., Gupta, B., Prasad, N. R., Prasad, R. (2009) Efficient data processing in ultra low power wireless networks: Ideas from compressed sensing. In 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies (pp 1–2).

  7. Mhatre, V., & Rosenberg, C. (2004). Design guidelines for wireless sensor networks: Communication, clustering and aggregation. Ad Hoc Networks, 2, 45–63.

    Article  Google Scholar 

  8. Chatterjea, S., Nieberg, T., Meratnia, N., Havinga, P. (2008). A distributed and self-organizing scheduling algorithm for energy-efficient data aggregation in wireless sensor networks. ACM Transactions on Sensor Networks, 4(4), article 20, 20:1–20:41.

    Google Scholar 

  9. Diaz, M. O., Leung, K. K. (2010). Randomized scheduling algorithm for data aggregation in wireless sensor networks. IEEE European Wireless Conference, 42–48.

  10. Boulis, A., Ganeriwal, S., & Srivastava, M. B. (2003). Aggregation in sensor networks: An energy-accuracy trade-off. Ad Hoc Networks, 1, 317–331.

    Article  Google Scholar 

  11. Yu, B., Li, J., Li, Y. (2009). Distributed data aggregation scheduling in wireless sensor networks. IEEE INFOCOM, 2159–2167.

  12. Galluccio, L., Palazzo, S., & Campbell, A. T. (2009). Modeling and designing efficient data aggregation in wireless sensor networks under entropy and energy bounds. International Journal of Wireless Information Networks, 16, 175–183.

    Article  Google Scholar 

  13. Li, H., Wua, C., Hua, Q. S., Lau, F. (2011). Latency-minimizing data aggregation in wireless sensor networks under physical interference model. Ad Hoc Networks, Article in press, 1–17.

  14. Wang, P., He, Y., Huang, L. (2011). Near optimal scheduling of data aggregation in wireless sensor networks. Ad Hoc Networks, Article in press, 1–10.

  15. Yu, B., & Li, J. Z. (2011). Minimum-time aggregation scheduling in duty-cycled wireless sensor networks. Journal of Computer Science and Technology, 26(6), 962–970.

    Article  MATH  Google Scholar 

  16. Guo, W., Xiong, N., Vasilakos, A. V., Chen, G., & Cheng, H. (2011). Multi-source temporal data aggregation in wireless sensor networks. Wireless Personal Communications, 56, 359–370.

    Article  Google Scholar 

  17. Ferrari, G., Martalò, M., Abrardo, A. (2012). Information fusion in wireless sensor networks with source correlation. Information Fusion, Article in press, 1–10.

  18. Li, D., Zhu, Q., Du, H., Li, J. (2012). An improved distributed data aggregation scheduling in wireless sensor networks. Journal of Combinatorial Optimization, Springer, 1–20.

  19. Nath, S., Gibbons, P. B., Seshan, S., Anderson, Z. (2008). Synopsis diffusion for robust aggregation in sensor networks. ACM Transaction on Sensor Network, 4(2), article. 7, 7-1–40.

    Google Scholar 

  20. Kalpakis, K. (2010). Everywhere sparse approximately optimal minimum energy data gathering and aggregation in sensor networks. ACM Transaction on Sensor Network, 7(1), article. 9, 9–2-9-26.

  21. Zheng, J., Xu, X., Wang, G. (2011). Energy efficient data aggregation scheduling in wireless sensor networks. International Joint Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11, 1662–1667.

  22. Sinha, A., Lobiyal, D. K. (2011). An entropic approach to data aggregation with divergence measure based clustering in sensor network. International Conference on Advances in Computing and Communications (ACC), Part III, CCIS 192, 132–142.

  23. Bagaa, M., Derhab, A., Lasla, N., Ouadjaout, A., Badache, N. (2012). Semi-structured and unstructured data aggregation scheduling in wireless sensor networks. 31st Annual IEEE International Conference on Computer Communications, 2671–2675.

  24. Heinzelman, W. R., Chandrakasan, A. P., Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, (pp 1–10).

  25. Fall, K., Varadhan, K. (2009). The NS manual. The VINT Project.

  26. Altman, E., Jemenez, T. (2003). NS simulator for beginners.

  27. Issariyakul, T., Hossain, E. (2009). Introduction to network simulator NS2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adwitiya Sinha.

Appendix A: Dissimilarity Coefficient

Appendix A: Dissimilarity Coefficient

The dissimilarity coefficient is a function to measure differences between two entities. Our proposed clustering and aggregation method uses the coefficient to detect the amount of dissimilarity existing in the sensed dataset gathered by pair of sensor nodes.

$$\begin{aligned} {\upbeta }\left( \hbox {P}_{\mathrm{i}=\mathrm{q}},\hbox {P}_{{\mathrm{i}=\hbox {r}}} \right) =\hbox {H}\left( \frac{1}{2}\hbox {P}_{\mathrm{i}=\mathrm{q}} +\frac{1}{2}\hbox {P}_{\mathrm{i}=\mathrm{r}} \right) -\frac{1}{2}\left[ \hbox {H}\left( {\hbox {P}_{{\mathrm{i}=\hbox {q}}}} \right) +\hbox {H}\left( \hbox {P}_{\mathrm{i}=\hbox {r}} \right) \right] \end{aligned}$$
(32)

The dissimilarity coefficient is computed on every row entities that refer to the datasets sensed by cluster members. On simplifying the above equation, we get:

$$\begin{aligned} {\upbeta }\left( {\hbox {P}_{\mathrm{i}=\hbox {q}}}, \hbox {P}_{\mathrm{i}=\hbox {r}} \right)&= -\sum _{\mathrm{j}=1}^{\updelta } \frac{\hbox {p}_\mathrm{q, j}^{\uppsi } +\hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } }{2}\log \left( {\frac{\hbox {p}_\mathrm{q, j}^{\uppsi } +\hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } }{2}} \right) \nonumber \\&+\frac{1}{2}\sum _{\mathrm{j}=1}^{\updelta } \hbox {p}_\mathrm{q, j}^{\uppsi } \log \left( {\hbox {p}_\mathrm{q, j}^{\uppsi } } \right) +\frac{1}{2}\sum _{\mathrm{j}=1}^{\updelta } \hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } \log \left( {\hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } } \right) \end{aligned}$$
(33)
$$\begin{aligned}&= \frac{1}{2}\log 2\sum _{\mathrm{j}=1}^{\updelta } \left( {\hbox {p}_\mathrm{q, j}^{\uppsi } +\hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } } \right) -\frac{1}{2}\sum _{\mathrm{j}=1}^{\updelta } \hbox {p}_\mathrm{q, j}^{\uppsi } \log \left( {\hbox {p}_\mathrm{q, j}^{\uppsi } +\hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } } \right) \nonumber \\&-\frac{1}{2} \sum _{\mathrm{j}=1}^{\updelta } \hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } \log \left( {\hbox {p}_\mathrm{q, j}^{\uppsi } +\hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } } \right) +\frac{1}{2}\sum _{\mathrm{j}=1}^{\updelta } \hbox {p}_\mathrm{q, j}^{\uppsi } \log \left( {\hbox {p}_\mathrm{q, j}^{\uppsi } } \right) \nonumber \\&+\frac{1}{2}\sum _{\mathrm{j}=1}^{\updelta } \hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } \log \left( {\hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } } \right) \end{aligned}$$
(34)
$$\begin{aligned}&= 1-\frac{1}{2}\mathop \sum \limits _{\mathrm{j}=1}^{\updelta } \hbox {p}_\mathrm{q, j}^{\uppsi } \left[ {\log \left( {\hbox {p}_\mathrm{q, j}^{\uppsi } +\hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } } \right) -\log \hbox {p}_\mathrm{q, j}^{\uppsi } } \right] \nonumber \\&-\frac{1}{2}\mathop \sum \limits _{\mathrm{j}=1}^{\updelta } \hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } \left[ {\log \left( {\hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } +\hbox {p}_\mathrm{q, j}^{\uppsi } } \right) -\log \hbox {p}_{\mathrm{r},\hbox {j}}^{\uppsi } } \right] \end{aligned}$$
(35)

Moreover, the coefficient of dissimilarity satisfies following important properties:

$$\begin{aligned}&0\le {\upbeta }\left( {\hbox {P}_{\mathrm{i}=\hbox {q}}}, \hbox {P}_{\mathrm{i}=\hbox {r}} \right) \le 1\end{aligned}$$
(36)
$$\begin{aligned}&{\upbeta }\left( {\hbox {P}_{\mathrm{i}=\hbox {q}}}, \hbox {P}_{\mathrm{i}=\hbox {q}} \right) =0\end{aligned}$$
(37)
$$\begin{aligned}&{\upbeta }\left( {\hbox {P}_{\mathrm{i}=\hbox {q}}}, \hbox {P}_{\mathrm{i}=\hbox {r}} \right) ={\upbeta }\left( {\hbox {P}_{\mathrm{i}=\hbox {r}}}, \hbox {P}_{\mathrm{i}=\hbox {q}} \right) \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, A., Lobiyal, D.K. Probabilistic Data Aggregation in Information-based Clustered Sensor Network. Wireless Pers Commun 77, 1287–1310 (2014). https://doi.org/10.1007/s11277-013-1566-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1566-1

Keywords

Navigation