Skip to main content
Log in

Frequency Reuse Techniques with a Distributed Antenna System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The performance of cellular networks is strongly limited by inter-cell interference. In order to reduce this interference, several techniques have been proposed, e.g., the frequency reuse techniques and distributed antenna system (DAS). This paper investigates the combinations of hard frequency reuse (HFR) and soft frequency reuse (SFR) techniques with DAS in a unique cell architecture, which are called DAS–HFR and DAS–SFR, respectively. This paper analytically quantifies the performance of the downlink multi-cell for DAS–HFR and DAS–SFR in terms of the average spectral efficiency. This also shows, the most appropriate frequency reuse technique depends not only on the average achievable data rate inside the cell, but also on the guaranteed achievable data rate (the minimum achievable data rate which is necessary to be obtained regardless of geographic location). The results show that DAS–SFR improves the achievable data rate of cell edges in a multi-cell environment as compared to a DAS–HFR when frequency reuse factor 1 is utilized. The results also show that DAS–SFR significantly increases the system capacity as compared to the DAS–HFR when frequency reuse factor 3 is utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. \(\mu _{N}= \sum _{n \in {SoS}} \left[ {D_n^{(0)}} \right] ^{ - \delta }{P_n^{(0)}} \text {exp} \left( { {\lambda } \mu _n^{(0)} + \lambda ^2 \frac{ \left[ {\sigma _n^{(0)}} \right] ^2 }{2} }\right) \)

  2. \(\sigma _{N}^2 =\sum _{n \in {SoS}} \left[ {D_n^{(0)}} \right] ^{ - 2\delta } \left[ {P_n^{(0)}} \right] ^2 \text {exp} \left( { {2 \lambda }{ \mu _n^{(0)}} + \lambda ^2 \left[ {\sigma _n^{(0)}} \right] ^2 }\right) \left( { \text {exp} \left( \lambda ^2 \left[ {\sigma _n^{(0)}} \right] ^2 \right) -1 }\right) \)

  3. \(\mu _{D}= \sum _{i = 1}^{18} \sum _{n \in {SoS}} \left[ {D_n^{(i)}} \right] ^{ - \delta } {P_n^{(i)}} \text {exp} \left( { {\lambda } \mu _n^{(i)} + \lambda ^2 \frac{\left[ {\sigma _n^{(i)}} \right] ^2}{2} }\right) \)

  4. \(\sigma _{D}^2 = \sum _{i = 1}^{18} \sum _{n \in {SoS}} \left[ {D_n^{(i)}} \right] ^{ - 2\delta } \left[ {P_n^{(i)}} \right] ^2 \text {exp} \left( { {2 \lambda } \mu _n^{(i)} + \lambda ^2 \left[ {\sigma _n^{(i)}} \right] ^2 }\right) \left( { \text {exp} \left( \lambda ^2 \left[ {\sigma _n^{(i)}} \right] ^2 \right) -1 }\right) \)

References

  1. Giuliano, R., Monti, C., & Loreti, P. (2008). Wireless technologies advances for emergency and rural communications: WiMAX fractional frequency reuse for rural environments. IEEE Wireless Communications, 15(3), 60–65.

    Article  Google Scholar 

  2. Dai, H., Molisch, A., & Poor, H. (2004). Downlink capacity of interference-limited MIMO systems with joint detection. IEEE Transaction on Wireless Communication, 3(2), 442–453.

    Article  Google Scholar 

  3. Cao, Z., Tureli, U., & Yao, Y. D. (2007). low-complexity orthogonal spectral signal construction for generalized OFDMA uplink frequency synchronization. IEEE Transaction on Vehicular Technology, 56(3), 1143–1154.

    Article  Google Scholar 

  4. Ozan, K. O., & El Gamal, H. (2011). Cooperative encoding for secrecy in interference channels. IEEE Transaction on Information Theory, 57(9), 5682–5694.

    Article  Google Scholar 

  5. Love, D. J., Heath, R. W., Santipach, W., & Honig, M. L. (2004). What is the value of limited feedback for MIMO channels? IEEE Communications Magazine, 42(10), 54–59.

    Article  Google Scholar 

  6. Hayssam, D., & Wei, Y. (2010). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Transaction on Wireless Communication, 9(5), 1748–1759.

    Google Scholar 

  7. Clark, M., Willis, T. III, Greenstein, L., Rustako, A. Jr., Erceg, V., Roman, R. (2001). Distributed versus centralized antenna arrays in broadband wireless networks. Vehicular Technology Conference, 53rd, vol. 1. IEEE (pp. 33–37).

  8. Saleh, A. A. M., Rustako, A. J., & Roman, R. S. (1987). Distributed antennas for indoor radio communications. IEEE Transaction on Communication, 35, 1245–1251.

    Article  Google Scholar 

  9. Andrews, J., Choi, W., & Heath, R, Jr. (2007). Overcoming interference in spatial multiplexing MIMO cellular networks. IEEE Wireless Communication, 14(6), 95–104.

    Article  Google Scholar 

  10. Choi, W., & Andrews, J. (2007). Downlink performance and capacity of distributed antenna system in multi-cell environment. IEEE Transaction on Wireless Communication, 6(1), 1676–1680.

    Article  Google Scholar 

  11. David Gonzalez, G., Garcia-Lozano, M., Ruiz Boque, S., & Seop Lee, D. (2013). Optimization of soft frequency reuse for irregular LTE macrocellular networks. IEEE Transaction on Wireless Communication, 12(5), 2410–2423.

    Article  Google Scholar 

  12. Jiming, C., Peng, W., & Jie, Z. (2013). Adaptive soft frequency reuse scheme for in-building dense femtocell networks. Communications, China, 10(1), 44–55.

    Article  Google Scholar 

  13. Huawei. (2005) Soft frequency reuse scheme for UTRAN LTE. 3GPP, Huawei R1–050507, May (2005).

  14. Wang, Z., & Stirling-Gallacher, R. A. (2002). Frequency reuse scheme for cellular OFDM systems. Electronics Letters, 38(8), 387–388.

    Article  Google Scholar 

  15. Huiling, Z. (2012). On frequency reuse in cooperative distributed antenna systems. Communications Magazine, IEEE no. 4, (pp. 85–89).

  16. Zhang, R., & Li, G. (2013). Distributed antenna systems in fractional-frequency-reuse-aided cellular networks. IEEE Transaction Vehicular Technology, 62, 1340–1349.

    Article  Google Scholar 

  17. Roh, W., Paulraj, A. (2002) Outage performance of the distributed antenna systems in a composite fading channel. IEEE Vehicular Technology Conference (pp. 1520–1524).

  18. Wang, J.-B., Chen, M., Chen, H.-M., Dang, X., Li, H.-Y. (2011). System outage probability analysis of uplink distributed antenna systems over a composite channel. In Proceedings of the IEEE vehicular technology conference (pp. 1–5).

  19. Chen, H.-M., Chen, H.-M., Chen, M. (2009). Capacity of the distributed antenna systems over shadowed fading channels. Vehicular Technology Conference, IEEE 69th (pp. 1–4). Spring.

  20. Castaneda-Trujillo, D., Samano-Robles, R., Gameiro, A. (2012). Frequency-reuse planning of the down-link of distributed antenna systems with maximum-ratio-combining (MRC) receivers. Latin America Transactions, IEEE (Revista IEEE America Latina) (3), 1703–1709.

  21. Al-Ahmadi, S., Yanikomeroglu, H., Boudreau, G. (2011). Downlink linear transmission schemes in a single-cell distributed antenna system with port selection. Vehicular Technology Conference, IEEE 73rd (pp. 1–5). Spring.

  22. Obaid, A., & Yanikomeroglu, H. (2000). Reverse-link power control in CDMA distributed antenna systems. IEEE Wireless Communications and Networkinig, 2, 608–612.

    Article  Google Scholar 

  23. Kudoh, E., & Adachi, F. (2003). Power and frequency efficient virtual cellular network. IEEE Vehicular Technology Conference, 4, 2485–2489.

    Google Scholar 

  24. Chang, R. Y., Zhifeng, T., Jinyun, Z., & Kuo, C.-C. (2009). A graph approach to dynamic fractional frequency reuse (FFR) in multi-cell OFDMA networks. IEEE International Conference on Communications (pp. 1–6).

  25. Mohamad, A. (2008). Optimal fractional frequency reuse (FFR) in multicellular OFDMA system. In Vehicular Technology Conference, 68th, IEEE, Fall (pp. 1–5).

  26. Castaneda-Trujillo, E., Samano-Robles, R., Gameiro, A. (2011). Frequency-reuse planning of the down-link of distributed antenna systems with maximum-ratio-combining (MRC) receivers. Latin-American, Conference on Communications (LATINCOM) (pp. 1–6). (2011).

  27. Zhu, H. (2012). On frequency reuse in cooperative distributed antenna systems. Communications Magazine, IEEE (pp. 85–89).

  28. LTE-A. (2008). Requirements for Further Advancements for EUTRA. 3GPP TR 36.913.

  29. LTE-A. (2006). Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA) (Release 7). 3GPP TR 25.814 ver 7.1.0.

  30. Schwartz, S., & Yeh, Y. (1982). On the distribution function and moments of power sums with lognormal components. Bell System Technical Journal, 61(7), 1441–1462.

    Article  MATH  Google Scholar 

  31. Papoulis, A. (1965). Probability, random variables, and stochastic processes. New York, NY: McGraw-Hill.

    MATH  Google Scholar 

  32. Gradshteyn, I., & Ryzhik, I. (2003). Table of integrals, series, and products. London: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Amin Hejazi.

Appendix

Appendix

Let’s assume the \(\psi _i\) is the a lognormal random variable with probability density function, \((f_{\psi }(\psi ))\), where \(\sigma _{\psi }\) and \(\mu _{\psi }\) are the shadowing standard deviation and mean respectively, and \(\lambda = {\frac{\ln 10}{10}}\).

$$\begin{aligned} {f_\psi }(\psi ) = \frac{1}{{\sqrt{2\pi } \lambda {\sigma _\psi }\psi }}\exp \left( { - \frac{{{{(\ln \psi - \mu _{\psi })}^2}}}{{2{\lambda ^2}\sigma _\psi ^2}}} \right) ,\quad \psi > 0, \end{aligned}$$
(21)

Therefore, the summation, multiplication and ratio of lognormal random variables can be approximated as a lognormal variable [30]. The summation of lognormal random variables \(\left( \sum \limits _{i=1}^{m} d(i) \psi _i\right) \) is expressed as a lognormal variable with mean \(\mu _{sum}\) and variance \(\sigma _{sum}\) as,

$$\begin{aligned} \mu _{sum}&= \sum \limits _{i=1}^{m}d(i)\text {exp} \left( {{\lambda }{\mu _{\psi _i}}+\lambda ^2 \frac{\left[ {\sigma _{\psi _i}}\right] ^2}{2}}\right) \end{aligned}$$
(22)
$$\begin{aligned} \sigma _{sum}^2&= \sum \limits _{i=1}^{m}d(i)\text {exp} \left( {{2\lambda }{\mu _{\psi _i}}+\lambda ^2\left[ {\sigma _{\psi _i}}\right] ^2}\right) \left( {\text {exp}\left( \lambda ^2\left[ {\sigma _{\psi _i}}\right] ^2\right) -1}\right) \end{aligned}$$
(23)

where \(d(i) \in \left\{ {-1,1} \right\} \). The multiplication of lognormal random variables \((\prod \nolimits _{i=1}^{m} \psi _i^{d(i)})\) is expressed as a lognormal variable with mean \(\mu _{mul}\) and variance \(\sigma _{mul}\) as,

$$\begin{aligned} \mu _{mul}&= \sum \limits _{i=1}^{3} d(i) \left( \lambda ^ {-1} \ln {( \mu _{\psi _i})} - \frac{\lambda ^{-1}}{2} \ln {\left( {\frac{ \sigma _{\psi _i} ^2}{ \mu _{\psi _i} ^2}}+1 \right) } \right) \end{aligned}$$
(24)
$$\begin{aligned} \sigma _ {mul} ^2&= \sum \limits _{i=1}^{3} d(i) \lambda ^ {-2} \ln {\left( {\frac{\sigma _{\psi _i} ^2}{ \mu _{\psi _i}^2}}+1 \right) } \end{aligned}$$
(25)

where \(d(i) \in \left\{ {-1,1} \right\} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejazi, S.A., Stapleton, S.P. Frequency Reuse Techniques with a Distributed Antenna System. Wireless Pers Commun 78, 171–192 (2014). https://doi.org/10.1007/s11277-014-1742-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1742-y

Keywords

Navigation