Skip to main content
Log in

QoS-Driven Power Allocation Under Peak and Average Interference Constraints in Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Efficient radio spectrum utilization can be improved using cognitive radio technology. In this work, we consider a spectrum underlay cognitive radio system operating in a fading environment. We propose an efficient power control scheme that maximizes the effective capacity of the secondary user, provisioning quality of service while on the same time the communication of the primary user is guaranteed through interference constraints. The specific power allocation scheme uses a policy in which the outage events of the primary user are exploited leading to a significant increase of the secondary user’s effective capacity. Moreover, the interference of the primary link to the secondary is taken into account so as to study a more realistic scenario. In order to safeguard primary user’s communication, two types of restrictions are considered: the traditional interference power constraint and the proposed inverse signal to interference plus noise ratio constraint. Different scenarios depending on the nature of the constraints (peak/average) are studied and their impact on the performance of the primary and secondary users is investigated. The superiority of the proposed schemes is demonstrated through their comparison with two reference power control schemes. Finally, numerical calculations, validated with simulation results, confirm the theoretical analysis and evaluate the performance of the proposed scheme for all the different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu, K. J. R., & Wang, B. (2010). Cognitive radio networking and security: A game theoretical view. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  2. Wang, B., & Liu, K. J. R. (Feb. 2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics Signal Process, 5(1), 5–23.

    Google Scholar 

  3. Mitola, J., III, (Nov. 1999). Cognitive radio for flexible mobile multimedia communications. In Proceedings of IEEE international workshop mobile multimedia communication (MMC), San Diego, CA, USA (Vol. 1, pp. 3–10).

  4. Hossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  5. Javan, M. R., & Sharafat, A. R. (May 2013). Distributed joint resource allocation in primary and cognitive wireless networks. IEEE Transactions on Communication, 61(5), 1708–1719.

  6. Xu, D., Feng, Z., & Zhang, P. (2012). Resource allocation for heterogeneous services in multiuser cognitive radio networks. International Journal of Communication System. doi:10.1002/dac.2462.

  7. Chen, J.-L., Liu, S.-W., Wu, S. L., & Chen, M.-C. (Sept. 2011). Cross-layer and cognitive QoS management system for next-generation networking. International Journal of Communication Systems, 24(9), 1150–1162.

    Google Scholar 

  8. Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communication, 2(4), 630–643.

    Google Scholar 

  9. Tang, J., & Zhang, X. (2007). Quality-of-service driven power and rate adaptation over wireless links. IEEE Transactions on Wireless Communication, 6(8), 3058–3068.

    Article  Google Scholar 

  10. Zhang, R. (April 2009). On peak versus average interference power constraints for protecting primary users in cognitive radio networks. IEEE Transactions on Wireless Communication, 8(4), 2112–2120.

  11. Farraj, A. K., & Hammad, E. M. (July 2013). Impact of quality of service constraints on the performance of spectrum sharing cognitive users. Wireless Personal Communications, 71(2), 975–985.

  12. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (May 2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Google Scholar 

  13. Farraj, A. K., & Miller, S. L. (May 2013). Scheduling in a spectrum-sharing cognitive environment under outage probability constraint. Wireless Personal Communications, 70(2), 785–805.

    Google Scholar 

  14. Simon, M. K., & Alouini, M.-S. (2005). Digital communications over fading channels. New York: Wiley.

    Google Scholar 

  15. Gradshteyn, I. S., & Ryzhik, I. M. (1994). Table of integrals, series, and products (5th ed.). San Diego: Academic Press.

    MATH  Google Scholar 

  16. Jovicic, A., & Viswanath, P. (Sept. 2009). Cognitive radio: An information–theoretic perspective. IEEE Transactions on Information Theory, 55(9), 3945–3958.

    Google Scholar 

  17. Zhang, L., Liang, Y.-C., & Xin, Y. (Jan. 2008). Joint beamforming and power allocation for multiple access channels in cognitive radio networks. IEEE Journal of Selected Areas Communication, 26(1), 38–51.

    Google Scholar 

  18. Chen, Y., Yu, G., Zhang, Z., Chen, H.-H., & Qiu, P. (July 2008). On cognitive radio networks with opportunistic power control strategies in fading channels. IEEE Transactions on Wireless Communication, 7(7), 2752–2761.

    Google Scholar 

  19. Ghasemi, A., & Sousa, E. S. (Feb. 2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communication, 6(2), 649–658.

    Google Scholar 

  20. Chang, C.-S., & Thomas, J. A. (1995). Effective bandwidth in high-speed digital networks. IEEE Journal of Selected Areas Communication, 13, 1091–1100.

    Article  Google Scholar 

  21. Qiao, D., Gursoy, M. C., & Velipasalar, S. (Feb. 2013). Effective capacity of two-hop wireless communication systems. IEEE Transactions on Information Theory, 59(2), 873–885.

    Google Scholar 

  22. Helmy, A., Musavian, L., & Tho, L. N. (Sept. 2013). Energy-efficient power adaptation over a frequency-selective fading channel with delay and power constraints. IEEE Transactions on Wireless Communication, 12(9), 4529–4541.

    Google Scholar 

  23. Vassaki, S., Panagopoulos, A. D., & Constantinou, P. (Jan. 2012). Effective capacity and optimal power allocation for mobile satellite systems and services. IEEE Communication Letters, 16(1), 60–63.

    Google Scholar 

  24. Ma, Y., Zhang, H., Yuan, D., & Chen, H.-H. (Dec. 2009). Adaptive power allocation with quality-of-service guarantee in cognitive radio networks. Computer Communications, 32(18), 1975–1982.

    Google Scholar 

  25. Musavian, L., & Aissa, S. (March 2010). Effective capacity of delay-constrained cognitive radio in Nakagami fading channels. IEEE Transactions on Wireless Communication, 9(3), 1054–1062.

  26. Li, D. (Nov. 2010). Effective capacity limits of cognitive radio networks under peak interference constraint. In IEEE 12th international conference on communication technology (ICCT ’10) (pp. 218–222, 11–14).

  27. Akin, S., & Gursoy, M. C. (Nov. 2010). Effective capacity analysis of cognitive radio channels for quality of service provisioning. IEEE Transactions on Wireless Communications, 9(11), 3354–3364.

    Google Scholar 

  28. Vassaki, S., Poulakis, M., Panagopoulos, A. D., & Constantinou, P. (Nov. 2011) Optimal power allocation under QoS constraints in cognitive radio systems. In IEEE 8th international symposium on wireless communication system (ISWCS ’11), Aachen, Germany (pp. 6–9).

  29. Kang, X., Liang, Y.-C., Nallanathan, A., Garg, H. K., & Zhang, R. (Feb. 2009). Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity. IEEE Transactions on Wireless Communication, 8(2), 940–950.

    Google Scholar 

  30. Menon, R., Mackenzie, A., Buehrer, R., & Reed, J. (Oct. 2009). Interference avoidance in networks with distributed receivers. IEEE Transactions on Communication, 57(10), 3078–3091.

    Google Scholar 

  31. Boche, H., Naik, S., & Alpcan, T. (May 2011). Characterization of convex and concave resource allocation problems in interference coupled wireless systems. IEEE Transactions on Signal Processing, 59(5), 2382–2394.

    Google Scholar 

  32. Kuczma, M. (1985). An introduction to the theory of functional equations and inequalities. Warsaw: Polish Scientific Publishers PWN.

    MATH  Google Scholar 

  33. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  34. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge Univ. Press.

    Book  MATH  Google Scholar 

  35. Zeidler, E. (2004). Oxford users guide to mathematics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  36. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes (4th ed.). Boston, MA: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Operational Program “Education and Lifelong Learning” under the project ARISTEIA II - FLAME, GSRT No. 3770, in National Technical University of Athens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavroula Vassaki.

Appendix

Appendix

The solution of (15) for \(P_s\epsilon \varOmega _1\) can be found by using the Lagrange function that is defined as:

$$\begin{aligned} L&= \int \limits _{h_{out}}^\infty \int \limits _0^\infty \int \limits _0^\infty \int \limits _0^\infty \left( 1+ \frac{P_s(a_{SU},h_{sp},h_s,h_{ps}, h_p)h_s}{P_ph_{ps}+N_0B}\right) ^{-a_{SU}}f_{ch}(h_s,h_{ps},h_{sp},h_p)dh_sdh_{ps}dh_{sp}dh_p \nonumber \\&\quad +\,\lambda _0 \left\{ \, \int \limits _{h_{out}}^\infty \int \limits _0^\infty \int \limits _0^\infty \int \limits _0^\infty h_{sp}P_s(a_{SU},h_{sp},h_s,h_{ps}, h_p)f_{ch}(h_s,h_{ps},h_{sp},h_p)dh_sdh_{ps}dh_{sp}dh_p -Q_{I,av} \right\} \nonumber \\ \end{aligned}$$
(29)

where \(f_{ch}(h_s,h_{ps},h_{sp},h_p)=f_{h_s}(h_s)f_{h_{ps}}(h_{ps})f_{h_{sp}}(h_{sp})f_{h_p}(h_p)\) denotes the joint pdf of the uncorrelated fading channel power gains. Giving the fact that the optimal solution should satisfy the Lagrange–Euler equation [34, 35] we get the following equation:

$$\begin{aligned} -\frac{a_{SU}h_s}{P_ph_{ps}+N_0B}\left( 1+ \frac{P_s(a_{SU},h_{sp},h_s,h_{ps}, h_p)h_s}{P_ph_{ps}+N_0B}\right) ^{-a_{SU}-1}+\lambda _0 h_{sp}=0 \end{aligned}$$
(30)

Solving the above with respect to \(P_s\), we found the optimal power allocation defined in (16). The value of the parameter \(\lambda _0 \) can be found from the satisfaction of the average interference power constraint:

$$\begin{aligned} \int \limits _{h_{out}}^\infty {\int \limits _0^\infty }{\int \limits _0^\infty }{\int \limits _0^\infty }h_{sp} \cdot P_s^*(h_s,h_{sp},h_{ps}, h_p) \cdot f_{ch}(h_s,h_{ps},h_{sp},h_p)dh_sdh_{sp}dh_{ps}dh_p=Q_{I,av}\nonumber \\ \end{aligned}$$
(31)

In the following, we simplify the integration part by finding the pdf of the random variable \(\frac{h_s}{h_{ps}P_p+N_0B}\) where \(h_s\) and \(h_{ps}\) follow the Gamma distribution with parameters \(m_s\) and \(m_{ps}\), respectively. In order to do that, at first we define two new random variables \(g_0=h_{ps}P_p+N_0B\) and \(g_1=h_s\). Taking into account that \(dh_sdh_{ps}=\frac{1}{P_p}dg_0dg_1\), the joint pdf \(f_{h_s,h_{ps}}(h_s, h_{ps})\) of the uncorrelated channel power gains can be easily transformed to \(f_{g_0,g_1}(g_0, g_1)\) with the simple substitution of the variables.

Afterwards, we define the variables \(x\) and \(y\) as \(x=g_1/g_0\) and \(y=g_0+g_1\) and we find the Jacobian determinant [36], which is given by

$$\begin{aligned} J=-\frac{(1+x)^2}{y}. \end{aligned}$$

Thus, the joint pdf of \(x\) and \(y\) can be expressed as follows:

$$\begin{aligned} f_{x,y}(x,y)&= \frac{m_s^{m_s}m_{ps}^{m_{ps}}P_p^{-m_{ps}} e^{N_0Bm_{ps}/P_p}}{\varGamma (m_s)\varGamma (m_{ps})}x^{m_s-1}(1+x)^{-m_{ps}-m_s} \nonumber \\&\quad \times \, y^{m_s}\left( y-N_0B(1+x)\right) ^{m_{ps}-1}\cdot \exp \left\{ -y\left( \frac{m_s P_p x+m_{ps}}{P_p(1+x)}\right) \right\} \end{aligned}$$
(32)

Integrating \(f_{x,y}(x,y)\) with respect to \(y\), we can find the marginal distribution of \(x\), which is given by:

$$\begin{aligned} f_x(x)&= \int \limits _{N_0B(1+x)}^\infty f_{x,y}(x,y)dy=\frac{m_s^{m_s}m_{ps}^{m_{ps}}P_p^{-m_{ps}} e^{N_0Bm_{ps}/P_p}}{\varGamma (m_s)\varGamma (m_{ps})}x^{m_s-1}(1+x)^{-m_{ps}-m_s}\nonumber \\&\cdot \int \limits _{N_0B(1+x)}^\infty y^{m_s}\left( y-N_0B(1+x)\right) ^{m_{ps}-1}\exp \left\{ -y\left( \frac{m_s P_p x+m_{ps}}{P_p(1+x)}\right) \right\} dy \end{aligned}$$
(33)

Using (4.11) from [15, p.348], we get that

$$\begin{aligned} f_x(x)&= \frac{m_s^{m_s}m_{ps}^{m_{ps}}P_p^{\frac{1+m_s-m_{ps}}{2}} e^{\frac{N_0Bm_{ps}}{P_p}}(N_0B)^{\frac{m_{ps}+m_s-1}{2}}}{\varGamma (m_s)}x^{m_s-1}(m_s x P_p+m_{ps})^{-\frac{m_s+m_{ps}+1}{2}} \nonumber \\&\quad \cdot \exp \left\{ -\frac{N_0B(m_s x P_p+m_{ps})}{2P_p}\right\} W \left( \frac{1+m_s-m_{ps}}{2},\right. \nonumber \\&\left. \frac{-(m_s+m_{ps})}{2},\frac{N_0B(m_s x P_p+m_{ps})}{P_p}\right) \end{aligned}$$
(34)

where \(W(\cdot )\) is the Whitakker function [15, p.1024]. Consequently, the average interference power constraint can be simplified to the following:

$$\begin{aligned} Q_{I,av}&= \frac{\varGamma (m_p,m_p h_{out})}{\varGamma (m_p)} \left\{ P_{max}\int \limits _0^\infty \left( 1-\frac{m_{sp}^{-1}}{\varGamma (m_{sp})}\varGamma \Big (m_{sp}+1,\right. \right. \nonumber \\&\left. \left. m_{sp}\lambda _0^{-1}a_{SU}x(P_{max}x+1)^{-(a_{SU}+1)}\right) \right) f_x(x)dx + \frac{m_{sp}^{-\frac{a_{SU}}{a_{SU}+1}}}{\varGamma (m_{sp})}\left( \frac{\lambda _0}{a_{SU}}\right) ^{-\frac{1}{a_{SU}+1}}\nonumber \\&\left. \times \,\int \limits _0^\infty x^{-\frac{a_{SU}}{a_{SU}+1}}\left[ \varGamma \left( m_{sp}+\frac{a_{SU}}{a_{SU}+1},m_{sp}\lambda _0^{-1}a_{SU}x(P_{max}x+1)^{-(a_{SU}+1)}\right) \right. \right. \nonumber \\&\left. -\,\varGamma \left( m_{sp}+\frac{a_{SU}}{a_{SU}+1},m_{sp}\lambda _0^{-1}a_{SU}x\right) \right] f_x(x)dx\nonumber \\&-\,\frac{m_{sp}^{-1}}{\varGamma (m_{sp})}\int \limits _0^\infty x^{-1}\left[ -\varGamma \left( m_{sp}+1 ,m_{sp}\lambda _0^{-1}a_{SU}x\right) \right. \nonumber \\&\left. \left. +\,\varGamma \left( m_{sp}+1 ,m_{sp}\lambda _0^{-1}a_{SU}x(P_{max}x+1)^{-(a_{SU}+1)}\right) \right] f_x(x)dx\right\} \end{aligned}$$
(35)

We must note here that the computation of the infinite integrals can be easily performed due to the decreasing behavior of the integrand functions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassaki, S., Poulakis, M.I., Panagopoulos, A.D. et al. QoS-Driven Power Allocation Under Peak and Average Interference Constraints in Cognitive Radio Networks. Wireless Pers Commun 78, 449–474 (2014). https://doi.org/10.1007/s11277-014-1761-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1761-8

Keywords

Navigation