Skip to main content
Log in

Enhanced IEEE 802.11 MAC Protocol for Precision Formation Flying-Based Distributed Spacecraft

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In order to support precision formation flying missions, distributed spacecraft require inter-spacecraft communications with required performance. We present a hierarchical network architecture that supports both time-criticality for updating relative navigation measurements and flexibility for implementing various phases of mission operations. The architecture incorporates a reactive routing protocol with timely topology status, an enhanced IEEE 802.11 media access control protocol meeting the quality of service requirements, and single carrier-frequency domain equalization technique for reducing energy consumption. Our simulation results show that the proposed network architecture provides a fair tradeoff between time-criticality of services and flexibility of network topology among spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scharf, D. P., Keim, J. A., & Hadaegh, F. Y. (2010). Flight-like ground demonstrations of precision maneuvers for spacecraft formations—part I. IEEE Systems Journal, 4, 84–95.

    Article  Google Scholar 

  2. Sanjeeviraja, T., & Dash, P. K. (2012). Estimation of precision formation flying using position of the spacecraft. In 2012 IEEE aerospace conference (pp. 157–160).

  3. Alagoz, F., & Gur, G. (2011). Energy efficiency and satellite networking: A holistic overview. Proceedings of the IEEE, 99, 1954–1979.

    Article  Google Scholar 

  4. El-madany, H. T., Fahmy, F. H., El-Rahman, N. M. A., & Dorrah, H. T. (2011). Spacecraft power system controller based on neural network. Acta Astronautica, 69, 650–657.

    Article  Google Scholar 

  5. Sun, Z. (2014). Satellite networking. New York: Wiley.

    Google Scholar 

  6. Marcos, A. (2005). Bergamo. High-throughput distributed spacecraft network: Architecture and multiple access technologies. Computer Networks, 47, 725–749.

    Article  Google Scholar 

  7. Liu, X., & Kumar, K. D. (2012). Network-based tracking control of spacecraft formation flying with communication delays. IEEE Transactions on Aerospace and Electronic Systems, 48, 2302–2314.

    Article  Google Scholar 

  8. Ilcev, S. D. (2011). Code division multiple access (CDMA) applicable for mobile satellite communications. In Control and communications (SIBCON) (pp. 224–227)

  9. Ali-Yahiya, T. (2011). Understanding LTE and its performance. New York: Springer.

    Book  Google Scholar 

  10. Clare, L. P., Gao, J. L., Jennings, E. H., & Okino, C. (2005). A network architecture for precision formation flying using the IEEE 802.11 MAC protocol. In Aerospace conference, 2005 IEEE (pp. 1335–1347).

  11. Si, L., Bingcai, C., & Lan, Y. (2010). A modified 802.11 protocol applicated in space wireless local area network. In 2010 International conference on computer design and applications (ICCDA) (Vol. 2, pp. V2-585–V2-588).

  12. Mirrezaei, S. M., Faez, K., & Ghasemi, A. (2014). Performance analysis of network coding based two-way relay wireless networks deploying IEEE 802.11. Wireless Personal Communications, 76, 41–46.

    Article  Google Scholar 

  13. Geng, R., Guo, L., & Wang, X. (2012). A new adaptive MAC protocol with QoS support based on IEEE 802.11 in ad hoc networks. Computers & Electrical Engineering, 38, 582–590.

    Article  Google Scholar 

  14. Luzio, M., Dinis, R., & Montezuma, P. (2012). SC-FDE for offset modulations: An efficient transmission technique for broadband wireless systems. IEEE Transactions on Communications, 60, 1851–1861.

    Article  Google Scholar 

  15. Silva, F., Dinis, R., & Montezuma, P. (2014). Channel estimation and equalization for asynchronous single frequency networks. IEEE Transactions on Broadcasting, 60, 110–119.

    Article  Google Scholar 

  16. Lei, L., Zhong, Z., Lin, C., & Shen, X. (2012). Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wireless Communications, 19, 96–104.

    Article  Google Scholar 

  17. Yi, X., Sun, Z., Yao, F., & Miao, Y. (2013). Satellite constellation of MEO and IGSO network routing with dynamic grouping. International Journal of Satellite Communications and Networking. doi:10.1002/sat.1032;31:277C302.

  18. Perkins, C. E., Royer, E. M., Das, S. R., & Marina, M. K. (2001). Performance comparison of two on-demand routing protocols for ad hoc networks. IEEE Personal Communications, 8, 16–21.

    Article  Google Scholar 

  19. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18, 535–547.

    Article  Google Scholar 

  20. Zhao, L., Wu, J. Y., Zhang, H., & Zhang, J. (2008). Integrated QoS differentiation over IEEE 802.11 WLANs. Journal of IET Communications, 2, 329–335.

    Article  Google Scholar 

  21. Bianchi, G., & Tinnirello, I. (2003). Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. In INFOCOM.

  22. Zhao, L., Zou, X., Ding, W., Zhang, H., & Zhang, J. (2008). Game-theoretic cross-layer design in WLANs. In IEEE international wireless communications and mobile computing conference (pp. 570–575).

  23. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. IEEE International Conference on Neural Networks, 4, 1942–1948.

    Google Scholar 

  24. Zhao, L., Gao, L., Zhao, X., & Ou, S. (2013). Power and bandwidth efficiency of wireless mesh networks. IET Networks, 2(3), 131–140.

    Article  Google Scholar 

Download references

Acknowledgments

The work was partly funded by the 111 Project (B08038), EU FP7 Project MONICA (PIRSES-GA-2011-295222), National Natural Science Foundation of China (No. 61372070), and the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2012D01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Liang or Liqiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, K., Zhao, L., Liu, Y. et al. Enhanced IEEE 802.11 MAC Protocol for Precision Formation Flying-Based Distributed Spacecraft. Wireless Pers Commun 79, 375–388 (2014). https://doi.org/10.1007/s11277-014-1862-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1862-4

Keywords

Navigation