Skip to main content

Advertisement

Log in

Energy-Aware Link Scheduling Protocol for Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

By reducing interferences drastically, time division multiple access (TDMA) based approaches are considered one of the most efficient solutions to optimize resources’ use. The existing protocols, however, address only the latency minimization without considering the waste of energy, which typically results from idle listening or frequent transitions of the radio module between sleep and active modes. Besides, only saturated systems are considered in these protocols, which may imply resources’ underutilization in some practical use cases. In this paper, we present an energy-aware TDMA-based link scheduling protocol, named deterministic link scheduling protocol (DLSP), designed with the aim of achieving both low energy consumption and low latency in wireless sensor networks. DLSP takes advantage of the spatial reuse of interference-free time slots using conflict graphs. Unlike earlier studies that often considered saturated traffic, we propose to relax the saturation assumption in order to maintain good performance when some of the nodes have no data to send. Thus, we propose to define the following transmission periods: a period to send the own data of the nodes and a period to relay packets. The simulation results clearly show the effectiveness of the proposed protocol, in terms of latency and energy consumption, compared to existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that the existence of a link between two sensors indicates that their communications may interfere and hence may not transmit simultaneously.

  2. In our protocol the active period is divided into time slots of sufficient duration to allow each sensor to transmit its data.

  3. The sensors in the vicinity of the sink.

References

  1. Kumar, S., Raghavan, V. S., & Deng, J. (2006). Medium access control protocols for ad-hoc wireless networks: a survey. Ad Hoc Networks, 4(3), 326–358.

    Article  Google Scholar 

  2. Sivrikaya, F., & Yener, B. (2004). Time synchronization in sensor networks: a survey. IEEE Network, 18(4), 45–50.

    Article  Google Scholar 

  3. Barnawi, A. Y. (2012). Adaptive TDMA slot assignment using request aggregation in wireless sensor networks. Procedia Computer Science, 10, 78–85.

    Article  Google Scholar 

  4. Sohraby, K., Minoli, D., & Znati, T. (2007). Wireless sensor networks technology, protocols, and applications. New York: Wiley Interscience, Wiley.

    Google Scholar 

  5. Li, J., & Lazarou, G. Y. (2004). A bit-map-assisted energy-efficient MAC scheme for wireless sensor networks. In Proceedings of the 3rd international symposium on information processing in sensor networks (IPSN) (pp. 55–60)

  6. Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J. J. (2003). Energy-efficient collision-free medium access control for wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (SenSys ’03) (pp. 181–192)

  7. Adere, K., & Murthy, G. R. (2010). Solving the hidden and exposed terminal problems using directional-antenna based MAC protocol for wireless sensor networks. In Proceeding of seventh international conference on wireless and optical communications networks (WOCN) (pp. 1–5)

  8. Ergen, S. C., & Varaiya, P. (2010). TDMA scheduling algorithms for wireless sensor networks. Wireless Networks, 16(4), 985–1997.

    Article  Google Scholar 

  9. Marin, I., Arias, J., Arceredillo, E., Zuloaga, A., Losada, I., & Mabe, J. (2008). LL-MAC: A low latency MAC protocol for wireless self-organised networks. Microprocessors and Microsystems, 32(4), 197–209.

    Article  Google Scholar 

  10. Macedo, M., Grilo, A., & Nunes, M. (2009). Distributed latency-energy minimization and interference avoidance in TDMA wireless sensor networks. Computer Networks, 53(5), 569–582.

    Article  Google Scholar 

  11. Djukic, P., & Valaee, S. (2009). Delay aware link scheduling for multi-hop TDMA wireless networks. IEEE/ACM Transactions on Networking, 17(3), 870–883.

    Article  Google Scholar 

  12. Blum, I. A. (2009). Communication temps-réel dans les WSN: Protocols MAC et routage. Ecole d’été Temps Réel (ETR 2009), Telecom ParisTech. https://www.telecom-paristech.fr/ETR09/presenta/AugeBlum. Accessed 14 March 2012.

  13. Rajendran, V., Garcia-Luna-Aceves, J. J., & Obraczka, K. (2005). Energy-efficient, application-aware medium access for sensor networks. In Proceedings of 2nd IEEE international conference on mobile ad-hoc and sensor systems (MASS) (8 pp.-630)

  14. Rowe, A., Mangharam, R., & Rajkumar, R. (2007). RT-link: A global time-synchronized link protocol for sensor networks. Ad hoc Networks, 6(8), 1201–1220.

    Article  Google Scholar 

  15. Pantazis, N. A., Vergados, D. J., Vergados, D. D., & Douligeris, C. (2009). Energy efficiency in wireless sensor network using sleep mode TDMA scheduling. Ad Hoc Network, 7(2), 322–343.

    Article  Google Scholar 

  16. Kumar, S., & Chauhan, S. (2011). A survey on scheduling algorithms for wireless sensor networks. International Journal of Computer Application, 20(5), 7–13.

    Article  Google Scholar 

  17. Ovalle-Martínez, F. J., Stojmenovic, I., García-Nocetti, F., & Solano-González, J. (2005). Finding minimum tranmission radio for preserving connectivity and constructing minimal spanning tree in ad-hoc and sensor networks. Journal of Parallel and Distributed Computing, 65(2), 132–141.

    Article  Google Scholar 

  18. Pandurangan, G., Khan, M., & Kumar, V. S. A. (2009). Distributed algorithms for constructing approximate minimum spanning trees in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(1), 124–139.

    Article  Google Scholar 

  19. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MathSciNet  MATH  Google Scholar 

  20. Nardis, L. D., & Benedetto, M. G. D. (2007). Overview of the IEEE 802.15.4/4a standards for low data rate wireless personal data networks. In Proceedings of 4th workshop on positioning, navigation and communication (WPNC ’07) (pp. 285–289)

  21. Manuel, A. A. (2004). Atelier d’outils informatiques pour la physique (InfoPhys), Elments de MATLAB. Département de la Physique de la Matière Condensé, université de Genève. http://perso.unige.ch/manuel/Matlab/MatLab1. Accessed 01 May 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouloud Atmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atmani, M., Hadjadj-Aoul, Y. & Aïssani, D. Energy-Aware Link Scheduling Protocol for Wireless Sensor Networks. Wireless Pers Commun 79, 417–435 (2014). https://doi.org/10.1007/s11277-014-1865-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1865-1

Keywords

Navigation