Skip to main content
Log in

Linear Pre-coding in MIMO–CDMA Relay Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Our aim in this paper is to define a novel beamforming approach in wireless multiple-input-multiple-output (MIMO) code-division-multiple-access (CDMA) relay networks, which involves communication between multiple source-destination pairs. It is assumed that full channel state information of source-relay and relay-destination channels are available. Our design consists of a two-step amplify-and-forward protocol. The first step includes signal transmission from the sources to the MIMO relay, and the second step contains transmitting a version of the linear precoded signal to the destinations. Beamforming is investigated only in MIMO-relay node to reduce end user’s hardware complexity and save the computational power. Accordingly, the optimization problem is defined to find the MIMO relay beamforming coefficients that minimize total relay transmit power by keeping the signal-to-interference-plus-noise ratio (SINR) of all destinations above a certain threshold value. It is shown that such optimization problem is a non-convex quadratically constrained quadratic programming, which is NP-hard in general. However, by relaxing this problem to a semi-definite programming problem, the problem can be solved efficiently. Simulation results verify the performance gain implied by MIMO–CDMA relay system compared to the non-CDMA coded system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Semi Definite Representation.

  2. Complex Symmetric Gaussian.

References

  1. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062–3080.

    Article  MathSciNet  Google Scholar 

  2. Golbon-Haghighi, M. H., Shirazi, M., Mahboobi, B., & Ardebilipour M. (2013). Optimal beamforming in wireless multiuser MIMO-relay networks. Presented at the 21st Iranian conference on electrical engineering (ICEE).

  3. Laneman, J. N., & Wornell, G. W. (2003). Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49, 2415–2425.

    Article  MathSciNet  Google Scholar 

  4. Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51, 3037–3063.

    Article  MATH  MathSciNet  Google Scholar 

  5. Todd, A. N., & Hunter, E. (2006). Diversity through coded cooperation. IEEE Transactions on Wireless Communication, 2, 283–289.

    Google Scholar 

  6. Nabar, R. U., Bolcskei, H., & Kneubuhler, F. W. (2004). Fading relay channels: Performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications, 22, 1099–1109.

    Article  Google Scholar 

  7. Alikhani, E. S., Mahboobi, B., & Ardebilipour, M. (2012). Interference aware resource allocation in orthogonal frequency-division multiple access-based relay networks. Communications, IET, 6, 1364–1373.

    Article  MATH  MathSciNet  Google Scholar 

  8. Alikhani, E. S., Mahboobi, B., Ardebilipour, M., & Alikhani A. S. (2011). Resource allocation and frequency reusing for multihop relay systems. In 19th Iranian conference on electrical engineering (ICEE), pp. 1–6.

  9. Alikhani, E. S., Mahboobi, B., Ardebilipour, M., Kheyri, H., & Alikhani, S. S. (2011). Adaptive radio resource allocation with frequency reusing for OFDMA cellular relay networks. In Third international conference on ubiquitous and future networks (ICUFN), pp. 395–400.

  10. Mahboobi, B., & Ardebilipour, M. (2013). Joint power allocation and routing in full-duplex relay network: An outage probability approach.

  11. Mahboobi, B., Mohammadi, M., Ardebilipour, M., & Moratab, A. (2010). In International congress on QoS aware power allocation in multi-hop multi-relay network., pp. 327–330.

  12. Mohammadi, M., Mahboobi, B., Ardebilipour, M., & Mobini, Z. (2010). Power-optimized multi-hop multi-branch amplify-and-forward cooperative systems. In 5th IEEE international symposium on wireless pervasive computing (ISWPC), pp. 534–539.

  13. Mohammadi, M., Mobini, Z., Ardebilipour, M., & Mahboobi, B. (2013). Performance analysis of generic amplify-and-forward cooperative networks over asymmetric fading channels. Wireless Personal Communications, 72, 49–70.

    Article  Google Scholar 

  14. Raeisi, A., Mahboobi, B., Zokaei, S., & Ardebilipoor, M. (2010). Near-optimal joint routing and power allocation for amplify-and-forward multi-hop networks. In 18th conference on telecommunications forum (TELFOR).

  15. Yindi, J., & Jafarkhani, H. (2009). Network beamforming using relays with perfect channel information. IEEE Transactions on Information Theory, 55, 2499–2517.

    Article  Google Scholar 

  16. Havary-Nassab, V., Shahbazpanahi, S., Grami, A., & Zhi-Quan, L. (2008). Distributed beamforming for relay networks based on second-order statistics of the channel state information. IEEE Transactions on Signal Processing, 56, 4306–4316.

    Article  MathSciNet  Google Scholar 

  17. Fazeli-Dehkordy, S., Shahbazpanahi, S., & Gazor, S. (2009). Multiple peer-to-peer communications using a network of relays. IEEE Transactions on Signal Processing, 57, 3053–3062.

    Article  MathSciNet  Google Scholar 

  18. Chalise, B. K., & Vandendorpe, L. (2009). MIMO relay design for multipoint-to-multipoint communications with imperfect channel state information. IEEE Transactions on Signal Processing, 57, 2785–2796.

    Article  MathSciNet  Google Scholar 

  19. Chalise, B. K., & Vandendorpe, L. (2009). Joint optimization of multiple MIMO relays for multi-point to multi-point communication in wireless networks. In IEEE 10th workshop on signal processing advances in wireless communications, 2009. SPAWC ’09, pp. 479–483.

  20. Golbon-Haghighi, M. H., Mahboobi, B., & Ardebilipour, M. (2013). Multiple antenna relay beamforming for wireless peer to peer communications. Journal of Information Systems and Telecommunication (JIST), 1, 209–215.

    Google Scholar 

  21. Sidiropoulos, N. D., Davidson, T. N., & Luo, Z.-Q. (2006). Transmit beamforming for physical-layer multicasting. IEEE Transactions on Signal Processing, 54, 2239–2251.

    Article  Google Scholar 

  22. Boyd, A. D. A. A. S. (2003). Relaxations and randomized methods for nonconvex QCQPs. Stanford, CA: Stanford Universiy, Autumn 2003. www.standford.edu/class/ee392o,EE92o.

  23. Peng, J., Roos, C., & Terlaky, T. (2002). Self-regularity: A new paradigm for primal-dual interior-point algorithms. Princeton: Princeton University Press.

    Google Scholar 

  24. Behbahani, A. S., Merched, R., & Eltawil, A. M. (2008). Optimizations of a MIMO relay network. IEEE Transactions on Signal Processing, 56, 5062–5073.

    Article  MathSciNet  Google Scholar 

  25. Tang, X., & Hua, Y. (2007). Optimal design of non-regenerative MIMO wireless relays. IEEE Transactions on Wireless Communications, 6, 1398–1407.

    Article  Google Scholar 

  26. Poor, H. V., & Verdu, S. (1997). Probability of error in MMSE multiuser detection. IEEE Transactions on Informations Theory, 43, 858–871.

    Article  MATH  Google Scholar 

  27. Verdu, S. (1998). MultiUser detection. Cambridge: Cambridge university press.

    MATH  Google Scholar 

  28. Guoping, Z., & Chin, F. (2004). Multi-antenna WCDMA receiver design with CORDIC. In 15th IEEE international symposium on personal, indoor and mobile radio communicagtions PIMRC, Vol. 4, pp. 2811–2814.

  29. Wan, C., Andrews, J. G., & Heath, R. W. (2007). Multiuser antenna partitioning for cellular MIMO–CDMA systems. IEEE Transactions on Vehicular Technology, 56, 2448–2456.

    Article  Google Scholar 

  30. Assra, A., Hamouda, W., & Youssef, A. (2010). EM-based joint channel estimation and data detection for MIMO–CDMA systems. IEEE Transactions on Vehicular Technology, 59, 1205–1216.

    Article  Google Scholar 

  31. Tu, Y.-P., Lu, H.-Y., & Fang, W.-H. (2011) Alternating multiuser detection with soft interference cancellation for heterogeneous-signaling MIMO CDMA systems. Wireless personal communilcatgion, pp. 1–18.

  32. Dempster, A., Laird, N., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B (Methodological), 39, 1–38.

    MATH  MathSciNet  Google Scholar 

  33. Driouch, E., & Ajib, W. (2012). Efficient scheduling algorithms for multiantenna CDMA systems. IEEE Transactions on Vehicular Technology, 61, 521–532.

    Article  Google Scholar 

  34. Beheshti, S. M., Ardebilipour, M., & Mahboobi, B. (2011). Joint interference avoidance and spectrum sharing for unlicensed wireless systems. In 19th Iranian conference on electrical engineering (ICEE), pp. 1–6.

  35. Havary-Nassab, V., Shahbazpanahi, S., & Grami, A. (2010). Optimal distributed beamforming for two-way relay networks. IEEE Transactions on Signal Processing, 58, 1238–1250.

    Article  MathSciNet  Google Scholar 

  36. Beheshti, S. M., Mahboobi, B., & Ardebilipour, M. (2011). Joint power adaptation and interference avoidance for unlicensed wireless systems: A game theoretic approach. International Journal of Information and Communication Technology, 3.

  37. Popescu, D. C. & Rose, C. (2003). Interference avoidance for wireless systems. In Wiley encyclopedia of telecommunications. New York: Wiley.

  38. Soleimani-Nasab, E., Ardebilipour, M., Kalantari, A., & Mahboobi, B. (2013). Performance analysis of multi-antenna relay networks with imperfect channel estimation. AEU-International Journal of Electronics and Communications, 67, 45–57.

    Article  Google Scholar 

  39. Chalise, B. K., & Vandendorpe, L. Optimization of MIMO relays for multipoint-to-multipoint communications: Nonrobust and robust designs. IEEE Transactions on Signal Processing, 58, 6355–6368.

  40. Mahboobi, B., Ardebilipour, M., Kalantari, A., & Soleimani-Nasab, E. (2013). Robust cooperative relay beamforming. IEEE Wireless Communications Letters, 2, 399–402.

  41. Mahboobi, B., Soleimani-Nasab, E., & Ardebilipour, M. (2014). Outage probability based robust distributed beam-forming in multi-user cooperative networks with imperfect CSI. Wireless Personal Communications, 77, 1629–1658.

  42. Horn, R. A., & Johnson, C. R. (1994). Topics in matrix analysis. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  43. Sturm, J. F. (1999). Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, 11–12, 625–653.

    Article  MathSciNet  Google Scholar 

  44. Grant, M., & Boyd, S. CVX: Matlab software for disciplined convex programming. http://stanford.edu/boyd/cvx.

  45. Karipidis, E., Sidiropoulos, N. D., & Luo, Z.-Q. (2008). Quality of service and max–min fair transmit beamforming to multiple cochannel multicast groups. IEEE Transactions on Signal Processing, 56, 1268–1279.

    Article  MathSciNet  Google Scholar 

  46. Luo, Z.-Q., Sidiropoulos, N. D., Tseng, P., & Zhang, S. (2007). Approximation bounds for quadratic optimization with homogeneous quadratic constraints. SIAM Journal of Optimization, 18, 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  47. Chang, T.-H., Luo, Z.-Q., & Chi, C.-Y. (2008). Approximation bounds for semidefinite relaxation of max–min-fair multicast transmit beamforming problem. IEEE Transactions on Signal Processing, 56, 3932–3943.

    Article  MathSciNet  Google Scholar 

  48. Ma, W.-K., Davidson, T. N., Wong, K. M., Luo, Z.-Q., & Ching, P.-C. (2002). Quasi-maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA. IEEE Transactions on Signal Processing, 50, 912–922.

    Article  MathSciNet  Google Scholar 

  49. Phan, A. H., Tuan, H. D., Kha, H. H., & Nguyen, H. H. (2012). Beamforming optimization in multiUser amplify-and-forward wireless relay networks. IEEE Transactions on Wireless Communication, 11, 1510–1520.

    Article  Google Scholar 

  50. Tuy, H. (1998). Convex analysis and global optimization. London: Kluwer Academic.

    Book  MATH  Google Scholar 

  51. Yongwei, H., & Palomar, D. P. (2010). Rank-constrained separable semidefinite programming with applications to optimal beamforming. IEEE Transactions on Signal Processing, 58, 664–678.

    Article  MathSciNet  Google Scholar 

  52. Rashid, U., Tuan, H. D. & Nguyen, H. H. (2012). Maximin relay beamforming in multiuser amplify-forward wireless relay networks. Presented at the wireless communication and networking conference (WCNC).

  53. Tuan, H. D., Son, T. T., Tuy, H., & Nguyen, H. H. (2011). Optimum multi-user detection by nonsmooth optimization. Presented at the IEEE international conference on acoustics speech and signal process (ICASSP).

  54. Nesterov, Y. E., & Nemirovskii, A. S. (1994). “Interior point polynomial algorithms in convex programming”, SIAM studies in applied mathematics (Vol. 13). Philadelphia, PA: SIAM.

    Book  Google Scholar 

  55. Wolkowicz, H., Saigal, R., & Vandenberghe, L. (2000). Handbook of semidefinite programming theory, algorithms, and applications. New York: Springer.

    Book  Google Scholar 

  56. Chalise, B. K., Vandendorpe, L., & Louveaux, J. (2007). Mimo relaying for multi-point to multi-point communication in wireless networks. In 2nd IEEE international workshop on computational advances in multi-sensor adaptive processing, 2007. CAMPSAP 2007, pp. 217–220.

  57. Johnson, R. A. H. a C. R. (1991). Topics in matrix analysis. Cambridge, UK: Cambridge University Press.

    MATH  Google Scholar 

  58. Brewer, J. (1978). Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems, 25, 772–781.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Hossein Golbon-Haghighi.

Appendices

Appendix A: Derivation of (15)

The pre-coded signals retransmitted by MIMO-relay is given by

$$\begin{aligned} {\varvec{\Omega }}( t )=\sum _{l=1}^d {{\varvec{\upxi }}_l } u_l (t) =\sum _{l=1}^d {\mathbf{W}_l {\varvec{\Gamma }}} u_l (t) \end{aligned}$$
(39)

where \({\varvec{\Omega }}(t)\in {\mathbb {C}}^{R\times 1}\), hence the total MIMO-relay transmit power can be calculated as

$$\begin{aligned} P_T&= E\left( {\left\langle {{\varvec{\Omega }}(t), {\varvec{\Omega }} (t)} \right\rangle } \right) =E\left( {\left. {\left( {\sum _{l=1}^d {\mathbf{W}_l u_l (T_0 -t){\varvec{\Gamma }}} } \right) ^{H}*\left( {\sum _{n=1}^d {\mathbf{W}_n u_n (t){\varvec{\Gamma }}}} \right) } \right| _{t=T_0 } } \right) \nonumber \\&= E\left( {\left. {{\varvec{\Gamma }}^{H}\sum _{l=1}^d {\mathbf{W}_l ^{H}u_l (T_0 -t)} *\sum _{n=1}^d {\mathbf{W}_n u_n (t){\varvec{\Gamma }}} } \right| _{t=T_0 } } \right) \nonumber \\&= E\left( {{\varvec{\Gamma }} ^{H}\sum _{l=1}^d {\sum _{n=1}^d {\mathbf{W}_l ^{H}} \left. {\underbrace{u_l (T_0 -t)*u_n (t)}} \right| _{t=T_0 } \mathbf{W}_n {\varvec{\Gamma }}} }\right) \end{aligned}$$
(40)

where the inner product for vectors \(\mathbf{x}(t),\mathbf{y}(t)\) is defined as

$$\begin{aligned} \left\langle \mathbf{x}(t),\mathbf{y}(t) \right\rangle \triangleq {\mathop {\int \limits _{-\infty }}^{\infty }} \mathbf{x}^{H}(t) \mathbf{y}(t) dt=\mathbf{x}^{H} ( {{T_0} - t} )*\mathbf{{y}}(t) |_{t = {T_0}} \end{aligned}$$
(41)

By using the correlation of the code-words defined in (5), the total relay transmit power can be written as

$$\begin{aligned} P_T =E\left( {{\varvec{\Gamma }}^{H}\mathbf{Q} {\varvec{\Gamma }}} \right) ,\quad \mathbf{Q}\triangleq \sum _{l=1}^d {\sum _{j=1}^d {\mathbf{W}_l ^{H}\rho _{l,j} \mathbf{W}_j } } \end{aligned}$$
(42)

For simplicity, we represent \(\mathrm{Q}\) in (42) into the following quadratic form

$$\begin{aligned} \mathbf{Q}=\left[ {{\begin{array}{l} {\mathbf{W}_\mathbf{1} } \\ {\mathbf{W}_\mathbf{2} } \\ \vdots \\ {\mathbf{W}_\mathbf{d} } \\ \end{array} }} \right] ^{H}\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l} {\rho _{1,1} \mathbf{I}_{R\times R} }&{} {\rho _{1,2} \mathbf{I}_{R\times R} }&{} \cdots &{} {\rho _{1,d} \mathbf{I}_{R\times R} } \\ {\rho _{2,1} \mathbf{I}_{R\times R} }&{} &{} &{} \\ \vdots &{} &{} \ddots &{} {\rho _{d-1,d} \mathbf{I}_{R\times R} } \\ {\rho _{d,1} \mathbf{I}_{R\times R} }&{} \cdots &{} {\rho _{d,d-1} \mathbf{I}_{R\times R} }&{} {\rho _{d,d} \mathbf{I}_{R\times R} } \\ \end{array} }} \right] \left[ {{\begin{array}{l} {\mathbf{W}_\mathbf{1} } \\ {\mathbf{W}_\mathbf{2} } \\ \vdots \\ {\mathbf{W}_\mathbf{d} } \\ \end{array} }} \right] \end{aligned}$$

The kernel of the above form can be expressed as a Kronecker products as follow

$$\begin{aligned} \mathbf{Q}=\mathbf{W}^{H}\left( {\Upsilon \otimes \mathbf{I}_{R\times R} } \right) _{Rd\times Rd} \mathbf{W} \end{aligned}$$
(43)

where \(\Upsilon \triangleq \left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l} {\rho _{1,1} }&{} {\rho _{1,2} }&{} {...}&{} {\rho _{1,d} } \\ {\rho _{2,1} }&{} \ddots &{} &{} \vdots \\ \vdots &{} &{} &{} \\ {\rho _{d,1} }&{} \cdots &{} &{} {\rho _{d,d} } \\ \end{array} }} \right] \).

Applying Lemma 1 to (42), the MIMO-Relay total transmit power (15) will be obtained.

Appendix B: Derivation of (18)

We can rewrite (11) as

$$\begin{aligned} {\varvec{\Gamma }} ={\varvec{\Gamma }}_{-\mathbf{k}} +{\varvec{\Gamma }}_\mathbf{k} +{\varvec{\Gamma }}_{{\varvec{\upvarepsilon }}_\mathbf{n} } ={\varvec{\Gamma }}_{-{\varvec{\upvarepsilon }}_\mathbf{n} } +{\varvec{\Gamma }}_{{\varvec{\upvarepsilon }}_\mathbf{n} } \end{aligned}$$
(44)

The first term of the right hand side of the above formula can be expressed as

$$\begin{aligned} {\varvec{\Gamma }}_{-{\varvec{\varepsilon }}_\mathbf{n} }&= \left[ {\left( {\sum _{l=1}^d {\mathbf{f}_l s_l \rho _{l,1} } } \right) ,...,\left( {\sum _{l=1}^d {\mathbf{f}_l s_l \rho _{l,d} } } \right) } \right] ^{T}=\sum _{l=1}^d {\left[ {\left( {\mathbf{f}_l s_l \rho _{l,1} } \right) ,...,\left( {\mathbf{f}_l s_l \rho _{l,d} } \right) } \right] } ^{T}\nonumber \\&= \sum _{l=1}^d \left( {\mathbf{r}_l^{T}\otimes \mathbf{f}_l } \right) s_l \end{aligned}$$
(45)

Then the correlation matrix of \({\varvec{\Gamma }}_{-\varepsilon _n}\) can be calculated as

$$\begin{aligned}&E\left( {{\varvec{\Gamma }}_{-\varepsilon _n } {\varvec{\Gamma }}_{-\varepsilon _n } ^{H}} \right) \nonumber \\&\qquad = E\left( {\sum _{n=1}^d {\sum _{l=1}^d {\left( {\mathbf{r}_l^{T}\otimes \mathbf{f}_l } \right) \left( {\mathbf{r}_n^{T}\otimes \mathbf{f}_n } \right) ^{H}s_l s_n^*} } } \right) {\mathop {=}\limits ^{\left( a \right) }} E\left( {\sum _{l=1}^d {\left( {\mathbf{r}_l^{T}\otimes \mathbf{f}_l } \right) \left( {\mathbf{r}_l^{T}\otimes \mathbf{f}_l } \right) ^{H}P_l } } \right) \nonumber \\&\qquad {\mathop {=}\limits ^{\left( b \right) }} E\left( {\sum _{l=1}^d {\left( {\mathbf{r}_l^{T}\otimes \mathbf{f}_l } \right) \left( {\mathbf{r}_l^{*}\otimes \mathbf{f}_l ^{H}} \right) P_l } } \right) {\mathop {=}\limits ^{(c)}} \sum _{l=1}^d {\left( {\mathbf{r}_l^{T}\mathbf{r}_l^{*}\otimes E\left( {\mathbf{f}_l \mathbf{f}_l ^{H}} \right) } \right) P_l } \end{aligned}$$
(46)

where \((a)\) holds because \(s_n\) and \(s_l\) are uncorrelated for \(l\ne n, (b)\) holds because \(\left( {\mathbf{x}\otimes \mathbf{y}} \right) ^{H}=\mathbf{x}^{H}\otimes \mathbf{y}^{H}\) and \((c)\) holds because \(\left( {\mathbf{A}\otimes \mathbf{B}} \right) \left( {\mathbf{C}\otimes \mathbf{D}} \right) =\mathbf{AC}\otimes \mathbf{BD}\) for any conforming matrices \(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}\) reference [57].

By using the following definition

$$\begin{aligned} \mathbf{u}(t)\triangleq [u_1 (t),u_2 (t),...,u_d (t)]^{T} \end{aligned}$$

and using \({\varvec{\upvarepsilon }}_n = =\int \limits _{-\infty }^{\infty }u_n^{*}(t)\mathbf{v}(t)dt{\overset{\Delta }{=}}\left\langle {u_{n} \left( t \right) ,{\mathbf {v}}\left( t \right) } \right\rangle \) from (6) in the definition of (11), \({\varvec{\Gamma }}_{\varepsilon _n }\) can be written as

$$\begin{aligned} {\varvec{\Gamma }}_{\varepsilon _n} = {\mathop {\int }\limits _{-\infty }^{\infty }}\left[ u_{1}^{*}(t)\mathbf{v} (t)^{T}, u_{2}^{*}(t)\mathbf{v}(t)^{T},..., u_{d}^{*}(t)\mathbf{v}(t)^{T}\right] ^{T} dt= {\mathop {\int }\limits _{-\infty }^{\infty }} \mathbf{u}^{*}(t)\otimes \mathbf{v}(t)dt \end{aligned}$$
(47)

then the correlation of \({\varvec{\Gamma }}_{\varepsilon _n } \) is thus:

$$\begin{aligned}&E\left( {\,{{\varvec{\Gamma }} _{{\varepsilon _n}}}{\varvec{\Gamma }} _{{\varepsilon _n}}^H} \right) = E\left( {\mathop {\int }\limits _{-\infty }^{\infty }} (\mathbf{u}^{*}(t)\otimes \mathbf{v}(t))dt\left[ {\mathop {\int }\limits _{-\infty }^{\infty }} (\mathbf{u}^{*}(t)\otimes \mathbf{v}(t)) dt\right] ^{H} \right) \nonumber \\&\qquad {\mathop {=}\limits ^{(a)}} E\left( {\mathop {\int }\limits _{-\infty }^{\infty }} {\left( {{u^T}(t) \otimes {v^H}(t)} \right) dt} \right) {\mathop {=}\limits ^{( b)}} \left( {\mathop {\int }\limits _{-\infty }^{\infty }}\left( \mathbf{u}^{*}(t)\mathbf{u}^{T}(t)\right) \otimes E\left( \mathbf{v}(t)\mathbf{v}^{H}(t)\right) \right) dt\nonumber \\&\qquad {\mathop {=}\limits ^{(c)}} \Upsilon \, \otimes \sigma _v^2{I_{R \times R}} \in {^{Rd \times Rd}} \end{aligned}$$
(48)

where \((a)\) holds because \(\left( {\mathbf{x}\otimes \mathbf{y}} \right) ^{H}=\mathbf{x}^{H}\otimes \mathbf{y}^{H},(b)\) holds because \(\left( {\mathbf{A}\otimes \mathbf{B}} \right) \left( {\mathbf{C}\otimes \mathbf{D}} \right) =\mathbf{AC}\otimes \mathbf{BD}\) for any conforming matrices \(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}\) [58] and \((c)\) holds because

$$\begin{aligned} {\mathop {\int }\limits _{-\infty }^{\infty }} \left( \mathbf{u}^{*}(t)\mathbf{u}^{T}(t)\right) dt= \Upsilon , {\mathop {\int }\limits _{-\infty }^{\infty }} E \left( \mathbf{v}(t)\mathbf{v}^{H}(t)\right) dt=\sigma _{v}^{2}I_{R \times R} \end{aligned}$$

As a result, the correlation matrix of \({\varvec{\Gamma }}\) will be obtained as

$$\begin{aligned} E\left( {{\varvec{\Gamma }}{\varvec{\Gamma }}^{H}} \right) =E\left( {{\varvec{\Gamma }}_{\varepsilon _n } {\varvec{\Gamma }}_{\varepsilon _n } ^{H}} \right) +E\left( { {\varvec{\Gamma }}_{-\varepsilon _n } {\varvec{\Gamma }}_{-\varepsilon _n } ^{H}} \right) =\sum _{l=1}^d {\left( {\mathbf{r}_l^{T}\mathbf{r}_l^{*}\otimes E\left( {\mathbf{f}_l \mathbf{f}_l ^{H}} \right) } \right) P_l } +\Upsilon \otimes \sigma _v^2 \mathbf{I}_{R\times R} \end{aligned}$$
(49)

Appendix C: Derivation of (26)

From (11), \({\varvec{\Gamma }}_{-k} \) can be rewritten as

$$\begin{aligned} {\varvec{\Gamma }}_{-k}&= [{\varvec{\upgamma }}_{1,-k}, {\varvec{\upgamma }}_{2,-k} ,...,{\varvec{\upgamma }}_{d,-k} ]^{T} =\left[ {\left( {\mathop {\sum _{l=1}}\limits _{l\ne k}^{d}} {\mathbf{f}_l \rho _{l,1} } s_l \right) , \left( {\mathop {\sum _{l=1}}\limits _{l\ne k}^{d}} {\mathbf{f}_l s_l \rho _{l,2} }\right) ,.... , \left( {\mathop {\sum _{l=1}}\limits _{l\ne k}^{d}} {\mathbf{f}_l s_l \rho _{l,d} } \right) } \right] ^{T} \nonumber \\&= {\mathop {\sum _{l=1}}\limits _{l\ne k}^{d}} {\left[ {\left( {\mathbf{f}_l s_l \rho _{l,1} } \right) , \left( {\mathbf{f}_l s_l \rho _{l,2} } \right) ,.... , \left( {\mathbf{f}_l s_l \rho _{l,d} } \right) } \right] ^{T}} ={\mathop {\sum _{l=1}}\limits _{l\ne k}^{d}} {\left( {\mathbf{r}_l^{T}\otimes \mathbf{f}_l } \right) s_l } \end{aligned}$$
(50)

then the correlation of \({\varvec{\Gamma }}_{-k} \) i.e., \({\varvec{\upbeta }}_k \triangleq E\left( {{\varvec{\Gamma }}_{-k} {\varvec{\Gamma }}_{-k}^H } \right) \) can be easily constructed as below

$$\begin{aligned} {\varvec{\upbeta }}_k&= E\left( {{\varvec{\Gamma }}_{-k} {\varvec{\Gamma }}_{-k}^H } \right) =E\left( {\mathop {\sum _{n=1}}\limits _{n\ne k}^{d}} {\mathop {\sum _{l=1}}\limits _{l\ne k}^{d}} \left( {\mathbf{r}_l ^{T}\otimes \mathbf{f}_l } \right) \left( {\mathbf{r}_n^{T}\otimes \mathbf{f}_n } \right) ^{H}s_l s_n^*\right) \nonumber \\&= E\left( {\mathop {\sum _{l=1}}\limits _{l\ne k}^{d}} \left( {\mathbf{r}_l^{T}\otimes \mathbf{f}_l } \right) \left( {\mathbf{r}_l^{T}\otimes \mathbf{f}_l } \right) ^{H}P_l \right) =E\left( {\mathop {\sum _{l=1}}\limits _{l\ne k}^{d}} \left( {\mathbf{r}_l ^{T}\otimes \mathbf{f}_l } \right) \left( {\mathbf{r}_l^{*}\otimes \mathbf{f}_l ^{H}} \right) P_l \right) \nonumber \\&= {\mathop {\sum _{l=1}}\limits _{l\ne k}^{d}} \left( \mathbf{r}_l ^{T}\mathbf{r}_l^{*}\otimes E\left( {\mathbf{f}_l \mathbf{f}_l ^{H}} \right) \right) P_l \end{aligned}$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golbon-Haghighi, MH., Mahboobi, B. & Ardebilipour, M. Linear Pre-coding in MIMO–CDMA Relay Networks. Wireless Pers Commun 79, 1321–1341 (2014). https://doi.org/10.1007/s11277-014-1932-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1932-7

Keywords

Navigation