Skip to main content
Log in

Linear Relaying Design for Spectrum Sharing Non-regenerative MIMO Cognitive Multiple-Relay Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we study optimal precoding matrix for spectrum sharing multiple-input multiple-output (MIMO) cognitive multiple-relay systems. Our aim is to maximize the system capacity subject to the total relay transmit power constraint and the interference power constraint at the primary user. For general case, all the nodes have multiple antennas. The precoder design problem is a non-convex problem. Currently there is no global optimal solution for it. We propose a suboptimal algorithm in which we first transform the original precoder design problem to a unitary matrix constrained problem. And then, we develop a modified Riemannian steepest descent algorithm (MRSDA) to solve it. For the special case that the secondary user has a single antenna and other nodes have multi-antennas, we propose an optimal solution based on rank-one decomposition theorem to transform the original problem into a semidefinite programming. Simulation results demonstrate the effectiveness of the proposed precoding matrix design algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The imperfect CSI case will be considered in our future work.

  2. We adopt the assumption that the interference from the PU to SU is neglected as [412]. In IEEE 802:22 standard, the secondary wireless regional area network (WRAN) is located far away from the primary transmitter and hence the interference from the primary transmitter can be neglected at the secondary receiver.

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.

    Article  Google Scholar 

  3. Luo, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.

    Article  Google Scholar 

  4. da Costa, D. B., Aïssa, S., & Cavalcante, C. C. (2012). Performance analysis of partial relay selection in cooperative spectrum sharing systems. Wireless Personal Communications, 64(1), 79–92.

    Article  Google Scholar 

  5. Ho-Van, K. (2012). Exact outage probability of underlay cognitive cooperative networks over Rayleigh fading channels. Wireless Personal Communications. doi:10.1007/s11277-012-0742-z.

  6. Li, L., Zhao, X., Xu, H., et al. (2011). Simplified relay selection and power allocation in cooperative cognitive radio systems. IEEE Transactions on Wireless Communications, 10(1), 33–36.

    Article  Google Scholar 

  7. Zarifi, K., Affes, S., & Ghrayeb A. (2011). Joint source power control and relay beamforming in amplify-and-forward cognitive networks with multiple source-destination pairs. In Proceedings of IEEE ICC (pp. 1–6). Kyoto: Japan, June 5–9, 2011.

  8. Duong, T. Q., Bao, V. N. Q., & Zepernick, H.-J. (2011). Exact outage probability of cognitive AF relaying with underlay spectrum sharing. Electronic Letters, 47(17), 1001–1002.

    Article  Google Scholar 

  9. Zhang, R., & Liang, Y. C. (2008). Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 88–102.

    Article  Google Scholar 

  10. Zhang, R., Liang, Y. C., & Cui, S. (2010). Dynamic resource allocation in cognitive radio networks: A convex optimization perspective. IEEE Signal Processing Magazine, 27(3), 102–114.

    Article  MathSciNet  Google Scholar 

  11. Li, Q., Luo, L., & Qin, J. (2012). Optimal relay precoder for non-regenerative MIMO cognitive relay systems with underlay spectrum sharing. Electronics Letters, 48(5), 295–297.

    Article  Google Scholar 

  12. Jitvanichphaibool, K., Liang, Y. C., & Zhang, R. (2009). Beamforming and power control for multi-antenna cognitive two-way relaying. In Proceedings of IEEE WCNC (pp. 1–6). Budapest: Hungary, April 5–8, 2009.

  13. Mu, H., Tugnait, J. K. (2012). MSE-based source and relay precoder design for cognitive radio multiuser two-way relay systems. In Proceedings of IEEE WCNC (pp. 742–747).

  14. Shi, H., Abe, T., Asai, T., & Yoshino, H. (2007). Relaying schemes using matrix triangularization for MIMO wireless networks. IEEE Transactions on Communications, 55(9), 1683–1688.

    Article  Google Scholar 

  15. Guan, W., Luo, H., & Chen, W. (2008). Linear relaying scheme for MIMO relay system with QoS requirements. IEEE Signal Processing Letters, 15, 697–700.

    Article  Google Scholar 

  16. Lee, K. J., Sung, H., Park, E., & Lee, I. (2010). Joint optimization for one and two-way MIMO AF multiple-relay systems. IEEE Transactions on Wireless Communications, 9(12), 3671–3681.

    Article  Google Scholar 

  17. Li, Q., Huang, J., Zhang, G., & Qin, J. (2012). Nearly optimal linear transceiver design for amplify-and-forward MIMO multiple-relay systems under MMSE criterion. International Journal of Communication Systems. doi:10.1002/dac.2430.

  18. Hu, C.-C., Liang, W.-Y., & Li, G.-Y. (2012). MMSE-based transceiver design for distributed MIMO amplify-and-forward cooperative networks in correlated channels. International Journal of Communication Systems. doi:10.1002/dac.2429.

  19. Lutkepohl, H. (1996). Handbook of matrices. Chichester: Wiley.

    Google Scholar 

  20. Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: Wiley.

    Book  Google Scholar 

  21. Wang, L., Karhunen, J., & Oja, E. (1995). A bigradient optimization approach for robust PCA, MCA and source separation. In Proceedings of IEEE International Conference on Neural Networks (pp. 1684–1689). Australia.

  22. Manton, J. H. (2002). Optimization algorithms exploiting unitary constraints. IEEE Transactions on Signal Processing, 50, 635–650.

    Article  MathSciNet  Google Scholar 

  23. Abrudan, T. E., Eriksson, J., & Koivunen, V. (2008). Steepest descent algorithms for optimization under unitary matrix constraint. IEEE Transactions on Signal Processing, 56(3), 1134–1147.

    Article  MathSciNet  Google Scholar 

  24. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  25. Bertselas, D. P. (1999). Nonlinear programming (2nd ed.). Belmont, MA: Athena Scientific.

    Google Scholar 

  26. Ai, W., Huang, Y., & Zhang, S. (2011). New results on Hermitian matrix rank-one decompostion. Mathematical Programming, 128, 253–283.

    Article  MATH  MathSciNet  Google Scholar 

  27. Magnus, J., & Neudecker, H. (2007). Matrix differential calculus with applications in statistics and econometrics. New York: Wiley.

    Google Scholar 

  28. Li, Q., Zhang, Q., Feng, R., Luo, L., & Qin, J. (2013). Optimal relay selection and beamforming in MIMO cognitive multi-relay networks. IEEE Communications Letters, 17(6), 1188–1191.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of P. R. China (61472458, 61202498, 61173148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanzhong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Feng, R. & Qin, J. Linear Relaying Design for Spectrum Sharing Non-regenerative MIMO Cognitive Multiple-Relay Systems. Wireless Pers Commun 81, 1045–1062 (2015). https://doi.org/10.1007/s11277-014-2170-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2170-8

Keywords

Navigation