Skip to main content

Advertisement

Log in

A Novel Method of Modeling Wireless Sensor Network Using Fuzzy Graph and Energy Efficient Fuzzy Based k-Hop Clustering Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Clustering is one of the widely used methods to save energy, increase spatial re usability, and scalability. In this paper, we have proposed a new fuzzy graph based modeling approach for wireless sensor network which takes into account the dynamic nature of network, volatile aspects of radio links and physical layer uncertainty. The fuzzy graph constructs fuzzy neighborhoods which are used to identify all the prospective member nodes of a cluster. For computation of optimum centrality of a cluster, we have defined a new centrality metric namely fuzzy k-hop centrality. The proposed centrality metric considers residual energy of individual nodes, link quality, hop distance between the prospective cluster head and respective member nodes to ensure better cluster head selection and cluster quality. Finally, a new computationally inexpensive clustering algorithm has been developed. The simulation results demonstrate that the proposed algorithm resulted in prolonged network lifetime in terms of clustering rounds, scalability, higher energy efficiency and uniform cluster head and cluster members distribution, as compare to LEACH-ERE and CHEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Communication Radius of Cluster Head.

  2. More the received signal strength lesser is the transmission power required to establish link.

  3. For simplicity this example assumes symmetric links.

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks. A Survey. Computer Networks, 38(2), 393–422.

    Article  Google Scholar 

  2. Manap, Z., Ali, B. M., Ng, C. K., Noordin, N. K., & Sali, A. (2013). A review on hierarchical routing protocols for wireless sensor networks. Wireless Personal Communications, 72(2), 1077–1104.

  3. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  4. Mhatre, V., & Rosenberg, C. (2004). Design guidelines for wireless sensor networks: Communication, clustering and aggregation. Ad Hoc Networks, 2(1), 45–63.

    Article  Google Scholar 

  5. Troubleyn, E., Moerman, I., & Demeester, P. (2013). QoS challenges in wireless sensor networked robotics. Wireless Personal Communications, 70(3), 1059–1075.

  6. Heinzelman, W. R., Chandrakasan, A. & Balakrishnan, H. (2002). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii international conference on system sciences (pp. 3005–3014).

  7. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1, 660–670.

  8. Ferng, H. W., Tendean, R., & Kurniawan, A. (2012). Energy-efficient routing protocol for wireless sensor networks with static clustering and dynamic structure. Wireless Personal Communications, 65(2), 347–367.

  9. Baker, D. J., & Ephremides, A. (1981). The architectural organization of a mobile radio network via a distributed algorithm. IEEE Transactions on Communications, 29(11), 1694–1701.

    Article  Google Scholar 

  10. Chatterjee, M., Das, S. K. & Turgut, D. (2002). WCA: A weighted clustering algorithm for mobile ad hoc networks. Journal of Cluster Computing, Special issue on Mobile Ad hoc Networking, 5, 193–204.

  11. Cheng, H., Yang, S., & Cao, J. (2013). Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc networks. Expert Systems with Applications., 40, 1381–1392.

    Article  Google Scholar 

  12. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  13. Ding, P., Holliday, J. & Celik, A. (8–10 June 2005). Distributed energy efficient hierarchical clustering for wireless sensor networks. In Proceedings of the 8th IEEE international conference on distributed computing in sensor systems (DCOSS) (pp. 322–339). CA, USA: Marina Del Rey.

  14. Gupta, I., Riordan, D. & Sampalli, S. (2005). Cluster-head election using fuzzy logic for wireless sensor networks. In Proceedings of the Annual Conference Communications Network Services Research (pp. 255–260).

  15. Kim, J., Park, S., Han, Y. & Chung, T. (2008): CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor networks. In Proceedings of the international conference advanced communications and technology (pp. 654–659).

  16. Pires, A., Silva, C., Cerqueira, E., Monteiro, D., & Viegas, R. (2011). CHEATS: A cluster-head election algorithm for WSN using a Takagi-Sugeno fuzzy system. In Communications (LATINCOM), 2011 IEEE Latin-American conference (pp. 1–6).

  17. Anno, J., Barolli, L., Durresi, A., Xhafa, F., & Koyama, A. (2008). Performance evaluation of two fuzzy-based cluster head selection systems for wireless sensor networks. Mobile Information Systems, 4(4), 297–312.

    Article  Google Scholar 

  18. Lee, J. S., Member, S., & Cheng, W. L. (2012). Fuzzy-logic-based clustering approach for energy predication. IEEE Sensors Journal, 12(9), 2891–2897.

    Article  Google Scholar 

  19. Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.

    Article  Google Scholar 

  20. Mhemed, R., Aslam, N., Phillips, W., & Comeau, F. (2012). An energy efficient fuzzy logic cluster formation protocol in wireless sensor networks. Procedia Computer Science, 10, 255–262.

    Article  Google Scholar 

  21. Hoang, A. T., & Motani, M. (2007). Collaborative broadcasting and compression in cluster-based wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 3(3), 1–34.

  22. Hu, Y., Shen, X., & Kang, Z. (2009). Energy-efficient cluster head selection in clustering routing for wireless sensor networks. In Proceedings of the IEEE 5th international conference on wireless communications, networking and Mobile Computing (pp. 1–4).

  23. Liang, Q. (2003). Clusterhead election for mobile ad hoc wireless network. In Proceedings of the 14th IEEE international symposium on personal, indoor and mobile radio communications (pp. 1623–1628).

  24. Gao, T., Jin, R. C., Song, J. Y., Xu, T. B., & Wang, L. D. (2012). Energy-efficient cluster head selection scheme based on multiple criteria decision making for wireless sensor networks. Wireless Personal Communications, 63(4), 871–894.

    Article  Google Scholar 

  25. Förster, A., Förster, A., & Murphy, A. L. (2010). Optimal cluster sizes for wireless sensor networks: An experimental analysis. In Ad Hoc networks, LNICST (vol. 28, pp. 49–63). Berlin: Springer.

  26. Freeman, L. C. (1978). Centrality in social networks: Conceptual clarification. Social Networks, 1, 215–239.

  27. Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92, 1170–1182.

    Article  Google Scholar 

  28. Chen, Q., Ma, J., Zhu, Y., Zhang, D., & Ni, L. (2007). An energy-efficient k-hop clustering framework for wireless sensor networks. Wireless Sensor Networks, 17–33.

  29. Garcia, F., Solano, J. & I. Stojmenovic, I. (2003). Connectivity based k-hop clustering in wireless networks. Telecommunication Systems, 22(1–4), 205–220.

  30. Koczy, L. T. (1992). Fuzzy graphs in the evaluation and optimization of networks. Fuzzy sets and systems, 46, 307–319.

    Article  MATH  MathSciNet  Google Scholar 

  31. Gupta, M., & Qi, J. (1991). Theory of T-norms and fuzzy inference methods. Fuzzy Sets Systems, 40, 431–450.

    Article  MATH  MathSciNet  Google Scholar 

  32. Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

  33. Zimmermann, H. (1991). Fuzzy set theory and its applications (2nd ed.). Dordrecht: Kluwer Academic.

    Book  MATH  Google Scholar 

  34. Ross, T. (2004). Fuzzy logic with engineering applications (2nd ed.). Chichester: Wiley.

    MATH  Google Scholar 

  35. Aboelela, E., & Douligeris, C. (1998). Fuzzy multiobjective routing model in B-ISDN. Computer Communications, 21, 1571–1584.

    Article  Google Scholar 

  36. Bandyopadhyay, S., & Coyle, E. J. (2003). An energy efficient hierarchical clustering algorithm for wireless sensor networks. IEEE INFOCOM, 3, 1713–1723.

    Google Scholar 

  37. Foss, S. G., & Zuyev, S. A. (1996). On a Voronoi aggregative process related to a bivariate Poisson process. Advances in Applied Probability, 28(4), 965–981.

    Article  MATH  MathSciNet  Google Scholar 

  38. Okabe, A., Boots, B., Sugihara, K. & Chiu, S. N. Spatial tessellations: Concepts and applications of Voronoi diagrams, 2nd edn. New York: Wiley.

  39. Karl, H., & Willig, A. (2005). Protocols and architectures for wireless sensor networks. New York: Wiley.

    Book  Google Scholar 

  40. Rappaport, T. S. (1998). Wireless communications: Principles and practice (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  41. Issaad, O., Pierre, S., Ivascu, G. I., & Garcia, O. (2008). A novel approach to modeling and flooding in ad-hoc wireless networks. Journal of Computer Science, 4(12), 967–975.

    Article  Google Scholar 

  42. Narayanaswamy, S., Kawadia, V., Sreenivas, R. S., & Kumar, P. (2002). Power control in ad-hoc networks: Theory, architecture, algorithm and implementation of the COMPOW protocol. In European wireless conference.

  43. Bonissone, P. P., & Keith, S. D. (1986). Selecting uncertainty calculi and granularity. Machine Intelligence Pattern Recognition, 4, 17–247.

    Google Scholar 

  44. Yager, R. R. (2010). Concept representation and database structures in fuzzy social relational networks. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 40(2), 413–419.

  45. Handy, M.J., Haase M. & Timmermann D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In Proceedings of the international workshop mobile wireless communication networks (pp. 368–372).

  46. Wu, Y., Zhang, L., Wu, Y., & Niu, Z. (2009). Motion-indicated interest dissemination with directional antennas for wireless sensor networks with mobile sinks. IEEE Transactions on Vehicular Technology, 58(2), 977–989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Ramana Reddy, B.V. A Novel Method of Modeling Wireless Sensor Network Using Fuzzy Graph and Energy Efficient Fuzzy Based k-Hop Clustering Algorithm. Wireless Pers Commun 82, 157–181 (2015). https://doi.org/10.1007/s11277-014-2201-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2201-5

Keywords

Navigation