Skip to main content
Log in

Secure Cooperative Communication via Artificial Noise for Wireless Two-Hop Relaying Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A two-hop relaying system for secrecy cooperative communication in the presence of an eavesdropper is investigated, where each relay node is equipped with a unitary matrix and cooperates to transmit the received signals, which can partly mitigate the deep channel fade. Gaussian distributed artificial noise (AN) is added in the null space of the intended receiver to ensure the secrecy of communication and achieve a better secrecy capacity while only the wiretap channel is degraded. The secrecy capacity and the optimal power distribution are studied in two scenarios, AN added by the transmitter and AN added by the cooperative relay nodes. Also, a sub-optimal power distribution strategy independent of the channel state information of eavesdropper is proposed to alleviate the computational overhead. The analytical results are confirmed by simulations that it is better to distribute more power to the available signals if the main channel is better, while more power to AN if the wire-tap channel is better. The sub-optimal power distribution can attain close performance compared with the optimal power distribution strategy but with substantially reduced computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.

    Article  MATH  MathSciNet  Google Scholar 

  2. Leung-Yan-Cheong, S. K., & Hellman, M. E. (1978). The Gaussian wire-tap channel. IEEE Transaction on Information Theory, 24(4), 451–456.

    Article  MATH  MathSciNet  Google Scholar 

  3. Liang, Y., & Poor, H. V. (2008). Generalized multiple access channels with confidential messages. IEEE Transactions on Information Theory, 54(3), 976–1002.

    Article  MATH  MathSciNet  Google Scholar 

  4. Liu, R., Maric, I., Yates, R. D., & Spasojevic, P. (2006). The discrete memoryless multiple access channel with confidential messages. In IEEE international symposium on information theory (pp. 957–961).

  5. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity-Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  6. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity-Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.

    Article  Google Scholar 

  7. Yang, B., Wang, W., & Yao, B. (2013). Destination assisted secret wireless communication with cooperative helpers. IEEE Signal Processing Letters, 20(11), 1032–1035.

    Article  Google Scholar 

  8. Zheng, G., Krikidis, I., & Li, J. (2013). Improving physical layer secrecy using full-duplex jamming receivers. IEEE Transactions on Signal Processing, 61(20), 4962–4974.

    Article  MathSciNet  Google Scholar 

  9. Jin, H., Shin, W.-Y., & Jung, B. C. (2013). On the multi-user diversity with secrecy in uplink wiretap networks. IEEE Communications Letters, 17(9), 1778–1781.

    Article  Google Scholar 

  10. Yang, N., Yeoh, P. L., & Elkashlan, M. (2013). MIMO wiretap channels: Secure transmission using transmit antenna selection and receive generalized selection combining. IEEE Communications Letters, 17(9), 1754–1757.

    Article  Google Scholar 

  11. Jemin, L., Andrea, C., & Alberto, R. (2013). Distributed network secrecy. IEEE Journal on Selected Areas in Communications, 31(9), 1889–1990.

    Article  Google Scholar 

  12. Negi, R., & Goel, S. (2005). Secret communication using artificial noise. In IEEE vehicular technology conference (Vol. 3, pp. 1906–1910).

  13. Zhu, J. G., Mo, J. H., & Tao, M. X. (2010). Cooperative secret communication with artificial noise in symmetric interference channel. IEEE Communications Letters, 14(10), 885–887.

    Article  Google Scholar 

  14. Goeckel, D., Vasudevan, S., Towsley, D., et al. (2011). Artificial noise generation from cooperative relays for everlasting secrecy in two-hop wireless networks. IEEE Journal on Selected Areas in Communications, 29(10), 2067–2076.

    Article  Google Scholar 

  15. Li, Q., & Ma, W.-K. (2011). A robust artificial noise aided transmit design for MISO secrecy. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3436–3439).

  16. Ding, Z., Peng, M., & Chen, H.-H. (2012). A general relaying transmission protocol for MIMO secrecy communications. IEEE Transactions on Wireless communications, 60(11), 3461–3471.

    Article  Google Scholar 

  17. Yang, Y.-C., Zhao, H., Sun, C., et al. (2013). Joint power allocation and relay selection for decode-and-forward cooperative relay in secure communication. The Journal of China Universities of Posts and Telecommunications, 20(2), 79–85.

    Article  Google Scholar 

  18. Lin, P.-H., Lai, S.-H., & Lin, S.-C. (2013). On secrecy rate of the generalized artificial noise assisted secure beamforming for wiretap channels. IEEE Journal on Selected Areas in Communications, 31(9), 1728–1740.

    Article  MathSciNet  Google Scholar 

  19. Muralidharan, V. T., & Rajan, B. S. (2012). Distributed space time coding for wireless two-way relaying. In IEEE global communications conference (GLOBECOM) (pp. 2455–2461).

  20. Dong, L., Han, Z., Petropulu, P. A., et al. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.

    Article  MathSciNet  Google Scholar 

  21. Parada, P., & Blahut, R. (2005). The secrecy capacity of SIMO and slow fading channels. In International symposium on information theory, 2005. ISIT 2005. Proceedings (pp. 2152–2155).

  22. Gerbracht, S., Scheunert, C., & Jorswieck, E. A. (2012). Secrecy outrage in MISO systems with partial channel information. IEEE Transactions on Information Forensics and Security, 7(2), 704–716.

    Article  Google Scholar 

  23. Li, J., & Pertropulu, A. P. (2011). On ergodic secrecy rate for Gaussian MISO wiretap channels. IEEE Transactions on Wireless communications, 10(4), 1176–1187.

    Article  Google Scholar 

  24. Zhou, N., Chen, X., Li, C., & Xue, Z. (2013). Secrecy rate of two-hop AF relaying networks with an untrusted relay. Wireless Personal Communications, 75, 119–129.

  25. Shafiee, S., & Ulukus, S. (2007). Achievable rates in Gaussian MISO channels with secrecy constraints. In IEEE international symposium on information theory (pp. 2466–2470).

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Grant Nos. 61371115 and 61262084), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20114BAB201018 and 20132BAB201019), the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) (Grant No. 20122BCB23002), the Research Foundation of the Education Department of Jiangxi Province (Grant No. GJJ14133), and the Opening Project of Shanghai Key Laboratory of Integrate Administration Technologies for Information Security (Grant No. AGK2014004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Run Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, N.R., Kang, Z.J. & Liang, X.R. Secure Cooperative Communication via Artificial Noise for Wireless Two-Hop Relaying Networks. Wireless Pers Commun 82, 1759–1771 (2015). https://doi.org/10.1007/s11277-015-2311-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2311-8

Keywords

Navigation