Skip to main content

Advertisement

Log in

Coverage Self-Optimization for Randomly Deployed Femtocell Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

There is an ever increasing demand on wireless communication systems for improved indoor coverage, greater capacity and enhanced user services. Energy efficient, small scale femtocell networks deployed in home, office and other indoor environments are one of the promising means of satisfying these demands. They can provide substantial benefits to both operators and users, such as a reduction in capital expenditures and operational expenditures, easy plug-and-play and optimized indoor coverage. Because of the random deployment behavior by the users, femtocell base stations (FBSs) should have cognitive position awareness, automatic parameter tuning and learning abilities. This will allow for self-optimization of the indoor coverage with the minimal interference to outdoor users. This paper first proves that the optimal coverage radii for FBS exist in typical indoor environments with position awareness enabled technology. Then, a dynamic power allocation technique for FBS is designed and analyzed in this paper by considering the path loss and different wall penetration conditions. To further enable the intelligent coverage self-optimization for randomly deployed indoor FBSs, a novel joint dynamic power allocation and antenna pattern selection scheme using the artificial neural network is proposed. Performance results are presented to illustrate the effectiveness and accuracy of the proposed coverage technique for randomly deployed femtocell networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mansfield, G. (2008, June). Femtocells in the US market-business drivers and consumer propositions. In Proceedings of the femtocell Europe, London, UK.

  2. Cullen, J. (2008, June). Radioframe presentation. In Proceedings of the femtocell Europe, London, UK.

  3. Zhang, J., & de la Roche, G. (2010). Femtocells: Technologies and deployment. New York: Wiley.

    Book  Google Scholar 

  4. Saleh, A. A. M., Rustako, A. J, Jr, & Roman, R. S. (1987). Distributed antennas for indoor radio communications. IEEE Transactions on Communications, 35(12), 1245–1251.

    Article  Google Scholar 

  5. Edwards, C. (2008). The future is femto. IET Engineering & Technology, 3(15), 70–73.

    Article  Google Scholar 

  6. Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.

    Article  Google Scholar 

  7. Femtoforum. http://www.femtoforum.org

  8. Chandrasekhar, V., & Andrews, J. G. (2009). Spectrum allocation in tiered cellular networks. IEEE Transactions on Communications, 57(10), 3059–3068.

    Article  Google Scholar 

  9. Lopez-Perez, D., Valcarce, A., de la Roche, G., & Zhang, J. (2009). OFDMA femtocells: A roadmap on interference avoidance. IEEE Communications Magazine, 47(9), 41–48.

    Article  Google Scholar 

  10. Claussen, H., Ho, L., T., W., & Samuel, L. G. (2008, April) Self-optimization of coverage for femtocell deployments. In Proceedings of the wireless telecommunications on symposium, pp. 278–285.

  11. Ashraf, I., Claussen, H. & Ho, L. T. W. (2010, May). Distributed radio coverage optimization in enterprise femtocell networks. In Proceedings of the IEEE international conference on communications, pp. 1–6.

  12. Barbieri, A., Damnjanovic, A., Ji, T. F., et al. (2012). LTE femtocells: System desgn and performance analysis. IEEE Journal on Selected Areas in Communications, 30(3), 586–594.

    Article  Google Scholar 

  13. Yun, J.-H., & Shin, K. G. (2011). Adaptive interference management of OFDMA femtocells for co-channel deployment. IEEE Journal on Selected Areas in Communications, 29(6), 1225–1241.

    Article  Google Scholar 

  14. Chandrasekhar, V., Andrews, J. G., Muharemovie, T., Shen, Z., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328.

    Article  Google Scholar 

  15. Yavuz, M., Meshkati, F., Nanda, S., Pokhariyal, A., Johnson, N., Raghothaman, B., et al. (2009). Interference management and performance analysis of UMTS/HSPA+ femtocells. IEEE Communications Magazine, 47(9), 102–109.

    Article  Google Scholar 

  16. Jo, H.-S., Mun, C., Moon, J., & Yook, J.-G. (2009). Interference mitigation using uplink power control for two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(10), 4906–4910.

    Article  Google Scholar 

  17. Arulselvan, N., Ramachandran, V., Kalyanasundaram, S., & Han, G. (2009, April). Distributed power control mechanisms for HSDPA femtocells. In Proceedings of the IEEE vehicular technology conference, pp. 1–5.

  18. Claussen, H. (2007, September). Performance of macro- and co-channel femtocells in a hierarchical cell structure. In Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications, pp. 1–5.

  19. Ho, L. T. W., & Claussen, H. (2007, September). Effects of user-deployed, co-channel femtocells on the call drop probability in a residential scenario. In Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications, pp. 1–5.

  20. Knisely, D. N., Yoshizawa, T., & Favichia, F. (2009). Standardization of femtocells in 3GPP. IEEE Communications Magazine, 47(9), 68–75.

    Article  Google Scholar 

  21. Knisely, D. N., & Favichia, F. (2009). Standardization of femtocells in 3GPP2. IEEE Communications Magazine, 47(9), 76–82.

    Article  Google Scholar 

  22. Claussen, H., & Pivit, F. (2009, June). Femtocell coverage optimization using switched multi-element antennas. In Proceedings of the IEEE international conference on communications, pp. 1–6.

  23. Chandrasekhar, V., Kountouris, M., & Andrews, J. G. (2009). Coverage in multi-antenna two-tier networks. IEEE Transactions on Wireless Communications, 8(10), 5314–5327.

    Article  Google Scholar 

  24. She, J., Suo, S. Q., Quan, H. Y., et al. (2008). 3GPP long term evolution: Principle and system design. Peking: Posts & Telecom Press.

    Google Scholar 

  25. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  26. Tsagkaris, K., Katidiotis, A., & Demestichas, P. (2008). Neural network-based learning schemes for cognitive radio systems. Computer Communications, 31(14), 3394–3404.

    Article  Google Scholar 

  27. Hopfield, J. J. (1988). Artificial neural networks. IEEE Circuits and Devices Magazine, 4(5), 3–10.

    Article  Google Scholar 

  28. Cybenko, G. (1989). Approximation by superposition of sigmoidal functions. Mathematics of Control, Signals and Systems, 2, 303–314.

    Article  MATH  MathSciNet  Google Scholar 

  29. Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  30. Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. Boston, MA: PWS Publishing.

    Google Scholar 

  31. Chen, T. P., Chen, H., & Liu, R. (1995). Approximation capability in \(C(\bar{ R}^n)\) by multilayer feedforward networks and related problems. IEEE Transaction on Neural Networks, 6(1), 25–30.

    Article  MATH  Google Scholar 

  32. Mornik, K. M., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixun Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (61201152, 61227801, 61421061), the National High Technology Research and Development Program of China (863 Program 2014AA01A707) and Key Laboratory of Universal Wireless Communications (KFKT-2013103).

Appendix

Appendix

1.1 Lemma 1

When \(0 < R_f \le D_s /2\), \(\delta \) is a decreasing function of \(R_f\) because

$$\begin{aligned} \frac{{d\delta _1 }}{{dR_f }} = \frac{{ - 2\pi R_f }}{{D_s^2 }} < 0. \end{aligned}$$
(50)

Thus, the minimum value of \(\delta \) is given by \(\delta _1^{\min } = \delta _1 (D_s /2) = 1 - \pi /4 = 0.21\) when \(R_f = D_s /2\). For \(D_s /2 < R_f < \sqrt{2} D_s /2\), define \(\alpha = \arccos [D_s /(2R_f )],0 < \alpha < \pi /4\) and substitute \(D_s = 2R_f \cos \alpha \) into (8). After some manipulation, we obtain

$$\begin{aligned} \delta _2 = \left( {2\alpha - \pi /4} \right) \tan ^2 \alpha - 2\tan \alpha + \left( {1 + 2\alpha - \pi /4} \right) . \end{aligned}$$
(51)

From

$$\begin{aligned} \because \frac{{d\delta _2 }}{{d\alpha }} = 4\left( \alpha - \frac{\pi }{8}\right) \tan \alpha (1 + \tan ^2 \alpha ) = 0 \therefore \alpha = \frac{\pi }{8}, \end{aligned}$$
(52)

and

$$\begin{aligned}&\because \frac{{d^2 \delta _2 }}{{d\alpha ^2 }} = 4\left( \alpha - \frac{\pi }{8}\right) + 4\tan \alpha + 16\left( \alpha - \frac{\pi }{8}\right) \tan ^2 \alpha + 4\tan ^3 \alpha + 12\left( \alpha - \frac{\pi }{8}\right) \tan ^4 \alpha \nonumber \\&\therefore \frac{{d^2 \delta _2 }}{{d\alpha ^2 }}\left| {_{\alpha = \frac{\pi }{8}} } \right. = 4\tan \alpha + 4\tan ^3 \alpha = 1.94 > 0, \end{aligned}$$
(53)

the minimum value of \(\delta _2\) is given by \(\delta _2^{\min } \left| {_{\alpha = \pi /8} } \right. = 1 - 2\tan \alpha = 0.17\) with \(\alpha = \pi /8 = 0.393\) and \(D_s = 2R_f \cos \alpha = 1.85R_f\). When \(R_f \ge \sqrt{2} D_s /2\), \(\delta \) is an increasing function of \(R_f\) according to

$$\begin{aligned} \frac{{d\delta _3 }}{{dR_f }} = \frac{{2\pi R_f }}{{D_s^2 }}\; > 0. \end{aligned}$$
(54)

Thus, the minimum value of \(\delta \) is given by \(\delta _3^{\min } = \delta _3 (\sqrt{2} D_s /2) = \pi /2 - 1 = 0.57\), with \(R_f = \sqrt{2} D_s /2\). The minimum value of \(\delta \) is then \(\delta ^{\min } = \min (\delta _1^{\min } ,\delta _2^{\min }, \delta _3^{\min } ) = \delta _2^{\min } = 0.17\) with an optimal FBS coverage radius of \(R_f^{Opt} = \arg \min \delta = 0.54D_s\).

1.2 Lemma 2

When \(0 < R_f \le D_s\), \(\delta \) is a decreasing function of \(R_f\) because

$$\begin{aligned} \frac{{d\delta _1 }}{{dR_f }} = \frac{{ - \pi R_f }}{{2D_s^2 }}\; <0. \end{aligned}$$
(55)

Thus, the minimum value of \(\delta \) is given by \(\delta _1^{\min } = \delta _1 (D_s ) = 1 - \pi /4 = 0.21\) when \(R_f = D_s\).

For \(D_s < R_f < \sqrt{2} D_s\), define \(\alpha = \arccos [D_s/(R_f )], 0 < \alpha < \pi /4\) and substitute \(D_s=R_f\cos \alpha \) into (15). After some manipulation, we obtain

$$\begin{aligned} \delta _2 = \left( {2\alpha - \pi /4} \right) \tan ^2 \alpha - 2\tan \alpha + \left( {1 + 2\alpha - \pi /4} \right) . \end{aligned}$$
(56)

Based on the results in (52) and (53), the minimum value of \(\delta _2\) is given by \(\delta _2^{\min } \left| {_{\alpha = \pi /8} } \right. = 1 - 2\tan \alpha = 0.17\) when \(\alpha = \pi /8 = 0.393\) and \(D_s=R_f\cos \alpha =0.92R_f\). When \(R_f \ge \sqrt{2} D_s\), \(\delta \) is an increasing function of \(R_f\) according to

$$\begin{aligned} \frac{{d\delta _3 }}{{dR_f }} = \frac{{\pi R_f }}{{2D_s^2 }}\; > 0. \end{aligned}$$
(57)

Thus, the minimum value of \(\delta \) is given by \(\delta _3^{\min } = \delta _3 (\sqrt{2} D_s ) = \pi /2 - 1 = 0.57\) when \(R_f = \sqrt{2} D_s\). The minimum \(\delta \) is then \(\delta ^{\min } = \min (\delta _1^{\min } ,\delta _2^{\min } ,\delta _3^{\min } ) = \delta _2^{\min } = 0.17\) with an optimal FBS coverage radius of \(R_f^{Opt} = \arg \min \delta = 1.08D_s\).

1.3 Lemma 3

When \(0 < R_f \le D_s /2\), \(\delta \) is a decreasing function of \(R_f\) according to

$$\begin{aligned} \frac{{d\delta _1 }}{{dR_f }} = \frac{{ - \pi R_f }}{{D_s^2 }}\; < 0. \end{aligned}$$
(58)

Thus, the minimum value of \(\delta \) is given by \(\delta _1^{\min } = \delta _1 (D_s /2) = 1 - \pi /8 = 0.61\) when \(R_f = D_s /2\). When \(D_s /2 < R_f < D_s\), define \(\alpha = \arccos [D_s /(2R_f )],0 < \alpha < \pi /3\) and substitute \(D_s=2R_f\cos \alpha \) into (24). After some manipulation, \(\delta _2\) is given by

$$\begin{aligned} \delta _2&= \frac{1}{{D_s^2 }} \left( {D_s^2 - \frac{{D_s }}{2}\sqrt{4R_f^2 - D_s^2 } - 2D_s \sqrt{R_f^2 - D_s^2 } - \frac{\pi }{2}R_f^2 + 2\alpha R_f^2 + 2\mu R_f^2 } \right) \nonumber \\&= \left( {\frac{\alpha }{2} - \frac{\pi }{8}} \right) \tan ^2 \alpha - \frac{1}{2}\tan \alpha + \left( {1 + \frac{\alpha }{2} - \frac{\pi }{8}} \right) . \end{aligned}$$
(59)

Based on

$$\begin{aligned} \because \frac{{d\delta _2 }}{{d\alpha }} = \left( \alpha - \frac{\pi }{4}\right) \tan \alpha (1 + \tan ^2 \alpha )= 0, \; \therefore \alpha = \frac{\pi }{4} \end{aligned}$$
(60)

and

$$\begin{aligned}&\because \frac{{d^2 \delta _2 }}{{d\alpha ^2 }} = \left( \alpha - \frac{\pi }{4}\right) + \tan \alpha + 4\left( \alpha - \frac{\pi }{4}\right) \tan ^2 \alpha + \tan ^3 \alpha + 3\left( \alpha - \frac{\pi }{4}\right) \tan ^4 \alpha \nonumber \\&\therefore \frac{{d^2 \delta _2 }}{{d\alpha ^2 }}\left| {_{\alpha = \frac{\pi }{4}} } \right. = \tan \alpha + \tan ^3 \alpha = 2 > 0. \end{aligned}$$
(61)

The minimum value of \(\delta _2\) is given by \(\delta _2^{\min } \left| {_{\alpha = \pi /4} } \right. = 1 - 0.5\tan \alpha = 0.5\) when \(\alpha = \pi /4 = 0.79\) and \(D_s = 2R_f \cos \alpha = 1.41R_f\). When \(D_s \le R_f < \sqrt{5} D_s /2\), define \(\alpha = \arccos (D_s/R_f), \beta = \arctan (1/2) - \alpha , \mu = \arccos [D_s/(2R_f)], \gamma = \arctan (2) - \mu , 0 \le \alpha < \arctan (1/2), \pi /3 \le \mu < \arctan (2)\) and substitute \(D_s = R_f \cos \alpha = 2R_f \cos \mu , \mu = \arccos [(\cos \alpha )/2]\) into (24). After some manipulation, we obtain

$$\begin{aligned} \delta _3&= 1 - \frac{1}{2}\tan \mu - 2\tan \alpha + \left( {2\alpha + 2\mu - \frac{\pi }{2}} \right) \sec ^2 \alpha \nonumber \\&= 1 - \frac{{\sqrt{4 - \cos ^2 \alpha } }}{{2\cos \alpha }} - 2\tan \alpha + \left[ {2\alpha + 2\arccos \left( {\frac{1}{2}\cos \alpha } \right) - \frac{\pi }{2}} \right] \sec ^2 \alpha . \end{aligned}$$
(62)

Using \(\zeta = \sqrt{4 -\cos ^2 \alpha } /(2\cos \alpha ), \xi = 2\alpha + 2\arccos \left[ {(\cos \alpha )/2} \right] - \pi /2\), (62) can be simplified to

$$\begin{aligned} \delta _3 = (1 - \zeta ) - 2\tan \alpha + \xi \sec ^2 \alpha . \end{aligned}$$
(63)

Based on

$$\begin{aligned} \because \frac{{d\zeta }}{{d\alpha }}&= \frac{{2\sin \alpha \sec ^2 \alpha }}{{\sqrt{4 - \cos ^2 \alpha } }}\frac{{d\xi }}{{d\alpha }} = \sec ^2 \alpha \left( {2 + \frac{{\sin \alpha }}{{\sqrt{4 - \cos ^2 \alpha } }} + 2\xi \tan \alpha } \right) \nonumber \\ \therefore \frac{{d\delta _3 }}{{d\alpha }}&= - \frac{{d\zeta }}{{d\alpha }} - 2\sec ^2 \alpha + \frac{{d\xi }}{{d\alpha }}\sec ^2 \alpha + 2\xi \tan \alpha \sec ^2 \alpha \nonumber \\&= 2\xi \tan \alpha \sec ^2 \alpha = 4 \left[ {\alpha + \arccos \left( {\frac{1}{2}\cos \alpha } \right) - \frac{\pi }{4}} \right] \tan \alpha \sec ^2 \alpha \end{aligned}$$
(64)

and

$$\begin{aligned}&\because 0 \le \alpha < \arctan (1/2),2/\sqrt{5} < \cos \alpha \le 1 \nonumber \\&\therefore \frac{\pi }{3} \le \arccos \left( {\frac{1}{2}\cos \alpha } \right) < \arccos \left( {\frac{1}{{\sqrt{5} }}} \right) \nonumber \\&\therefore \alpha + \arccos \left( {\frac{1}{2}\cos \alpha } \right) \ge \frac{\pi }{3} > \frac{\pi }{4}\nonumber \\&\therefore \frac{{d\delta _3 }}{{d\alpha }} = 4\left[ {\alpha + \arccos \left( {\frac{1}{2}\cos \alpha } \right) - \frac{\pi }{4}} \right] \tan \alpha \sec ^2 \alpha > 0. \end{aligned}$$
(65)

Thus \(\delta _3\) is an increasing function of \(R_f\) with minimum value \(\delta _3^{\min } \left| {_{\alpha = 0,\mu = \pi /3} } \right. = 1 - \sqrt{3} /2 + \pi /6 = 0.66\) when \(\alpha =0\), \(\mu = \pi /3\) and \(D_s=R_f\).

When \(R_f \ge \sqrt{5} D_s /2\), \(\delta \) is an increasing function of \(R_f\) according to

$$\begin{aligned} \frac{{d\delta _4 }}{{dR_f }} = \frac{{\pi R_f }}{{D_s^2 }}\; > 0. \end{aligned}$$
(66)

Thus, the minimum value of \(\delta \) is given by \(\delta _4^{\min } = \delta _4 (\sqrt{5} D_s /2) = 5\pi /8 - 1 = 0.96\) when \(R_f = \sqrt{5} D_s /2\). The minimum value of \(\delta \) is then \(\delta ^{\min } = \min (\delta _1^{\min } ,\delta _2^{\min } ,\delta _3^{\min } ,\delta _4^{\min } ) = \delta _2^{\min } = 0.5\) with an optimal FBS coverage radius of \(R_f^{Opt} = \arg \min \delta = 0.71D_s\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Feng, Z. & Li, W. Coverage Self-Optimization for Randomly Deployed Femtocell Networks. Wireless Pers Commun 82, 2481–2504 (2015). https://doi.org/10.1007/s11277-015-2360-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2360-z

Keywords

Navigation