Skip to main content
Log in

Design and Performance Study of Sierpinski Fractal Based Patch Antennas for Multiband and Miniaturization Characteristics

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Modern wireless communication systems demand for compact and miniaturised antennas which are capable of operating at multiple frequency bands. Cutting fractals on traditional geometry and using them as antennas for such applications have a wide scope of research. In this work, Sierpinski geometry based patch antenna is considered for multiband operation and miniaturisation of the radiating element. The characteristics of the fractal based antennas are investigated as a function of fractal iteration. The fabricated prototypes are used to validate the simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anguera, J., Puente, C., Borja, C., & Soler, J. (2005). Fractal shaped antennas: A review. Encyclopedia of RF and Microwave Engineering.

  2. Żotkiewicz, M., & Pióro, M. (2013). Exact approach to reliability of wireless mesh networks with directional antennas. Telecommunication Systems, 56, 1–11.

  3. Mandal, D., Ghoshal, S. P., & Bhattacharjee, A. K. (2013). Optimized radii and excitations with concentric circular antenna array for maximum sidelobe level reduction using wavelet mutation based particle swarm optimization techniques. Telecommunication Systems, 52(4), 2015–2025.

    Article  Google Scholar 

  4. Carle, G., & Zitterbart, M. (2002). Proceedings of the 7th IFIP/IEEE international workshop on protocols for high speed networks.

  5. Freeman, W. H., & Jabbar, W. H. (2011). New elements concentrated planar fractal antenna arrays for celestial surveillance and wireless communications. ETRI Journal, 33(6), 849–856.

    Article  MATH  Google Scholar 

  6. Lizzi, L., Azaro, R., Oliveri, G., & Massa, A. (2012). Multiband fractal antenna for wireless communication systems for emergency management. Journal of Electromagnetic Waves and Applications, 26(1), 1–11.

    Article  Google Scholar 

  7. Werner, D. H., & Werner, P. L. (1996). Frequency-independent features of self-similar fractal antennas. Radio Science, 31(6), 1331–1343.

    Article  Google Scholar 

  8. Mushiake, Y. (1992). Self-complementary antennas. Antennas and Propagation Magazine, IEEE, 34(6), 23–29.

    Article  Google Scholar 

  9. Chowdary, P. S. R., Prasad, A. M., Rao, P. M., & Anguera, J. (2013). Simulation of radiation characteristics of Sierpinski fractal geometry for multiband applications. International Journal of Information and Electronics Engineering, 3(6), 618–621.

    Google Scholar 

  10. Vinoy, K. J., Jose, K. A., & Varadan, V. K. (2004). Generalized design of multi-resonant dipole antennas using Koch curves. Applied Computational Electromagnetics Society Journal, 19(1), 22–31.

    Google Scholar 

  11. Puente-Baliarda, C., Romeu, J., Pous, R., & Cardama, A. (1998). On the behavior of the Sierpinski multiband fractal antenna. IEEE Transactions on Antennas and Propagation, 46(4), 517–524.

    Article  MathSciNet  MATH  Google Scholar 

  12. Anagnostou, D., Chryssomallis, M. T., Lyke, J. C., & Christodoulou, C. G. (2003). Improved multiband performance with self-similar fractal antennas. IEEE Topical Conference on Wireless Communication Technology, 271, 272.

    Google Scholar 

  13. Na, Y., & Xiao-wei, S. (2005). Analysis of the multiband behavior on Sierpinski carpet fractal antennas. Asia-Pacific Microwave Conference Proceedings, 4, 10–14.

    Google Scholar 

  14. Mishra, R. K., Ghatak, R., & Poddar, D. R. (2008). Design formula for Sierpinski gasket pre-fractal planar-monopole antennas [Antenna Designer’s Notebook]. IEEE Antennas and Propagation Magazine, 50(3), 104, 107.

  15. Anguera, J., Puente, C., Borja, C., Montero, R., & Soler, J. (2001). Small and high directivity bowtie patch antenna based on the Sierpinski Fractal. Microwave and Optical Technology Letters, 31(3), 239–241.

    Article  Google Scholar 

  16. Anguera, J., Montesinos, G., Puente, C., Borja, C., & Soler, J. (2003). An under-sampled high directivity microstrip patch array with a reduced number of radiating elements inspired on the Sierpinski fractal. Microwave and Optical Technology Letters, 37(2), 100–103.

    Article  Google Scholar 

  17. Anguera, J., Martínez, E., Puente, C., Borja, C., & Soler, J. (2006). Broad-band triple-frequency microstrip patch radiator combining a dual-band modified Sierpinski fractal and a monoband antenna. IEEE Transactions on Antennas and Propagation, 54(11), 3367–3373.

    Article  Google Scholar 

  18. Anguera, J., Puente, C., Borja, C., & Soler, J. (2007). Dual frequency broadband stacked microstrip antenna using a reactive loading and a fractal-shaped radiating edge. IEEE Antennas and Wireless Propagation Letters, 6, 309–312.

    Article  Google Scholar 

  19. Anguera, J., Martínez, E., Puente, C., Borja, C., & Soler, J. (2004). Broad band dual-frequency microstrip patch antenna with modified Sierpinski fractal geometry. IEEE Transactions on Antennas and Propagation, 52(1), 66–73.

    Article  Google Scholar 

  20. Kamakshi, K., Ansari, J. A., Singh, A., & Aneesh, M. (2014). Analysis of L-probe proximity fed annular ring patch antenna for wireless applications. Wireless Personal Communications, 77(2), 1449–1464.

    Article  Google Scholar 

  21. Bilgiç, M. M., & Yeğin, K. (2014). Diversity antenna design for wireless alarm networks. Wireless Personal Communications, 78(1), 729–740.

    Article  MATH  Google Scholar 

  22. Ansari, J. A., Kumari, K., Singh, A., & Mishra, A. (2013). Ultra wideband co-planer microstrip patch antenna for wireless applications. Wireless Personal Communications, 69(4), 1365–1378.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Satish Rama Chowdary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdary, P.S.R., Prasad, A.M., Rao, P.M. et al. Design and Performance Study of Sierpinski Fractal Based Patch Antennas for Multiband and Miniaturization Characteristics. Wireless Pers Commun 83, 1713–1730 (2015). https://doi.org/10.1007/s11277-015-2472-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2472-5

Keywords

Navigation