Skip to main content
Log in

Analysis of Outage Probability and Average Signal Power of Two Independent Block Fading Channel for a SISO System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper deals with the design of a new system where the channel is subjected to a more generalized scenario by considering two-independent block fading (L = 2). Each block undergoes different fading characteristics for a particular time interval. This time interval is the coherence interval such that the channel coefficient is fixed during a fading block, and statistically independent from one block to another. The main focus of this work is to derive performance measures, such as outage probability and average signal power for Rayleigh, Nakagami, and Weibull fading channels. Once the mathematical expressions are derived, attention is focussed to obtain numerical results for L = 2 by plotting analytical graphs for the obtained expressions and are observed with proposed system parameters like average fading channel power and signal-to-noise ratio (SNR) in the case of a Rayleigh fading channel, Nakagami fading parameter m, fading power Ω, and SNR in the case of a Nakagami fading channel, and Weibull fading parameters k and λ in the case of a Weibull fading channel. The proposed system can thus be evaluated and the amount of degradation can be measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sklar, B. (2001). Digital communication: Fundamentals and applications (2nd ed.). NJ: Prentice Hall.

    MATH  Google Scholar 

  2. Duman, T. M., & Ghrayeb, A. (2007). Coding for MIMO communication systems. England: Wiley.

    Book  MATH  Google Scholar 

  3. Rappaport, T. S. (2001). Wireless communications, principles and practice (2nd ed.). NJ: Prentice Hall.

    Google Scholar 

  4. Valluri, B., & Bhaskar, V. (2012). Performance measures over slowly fading MIMO channels using quantised and erroneous feedback. IET Communications, 6(11), 1397–1406.

    Article  MathSciNet  MATH  Google Scholar 

  5. Knopp, R., & Humblet, P. (2000). On coding for block fading channels. IEEE Transactions on Information Theory, 46(4), 189–205.

    Article  MATH  Google Scholar 

  6. Ekbatani, S., Etemadi, E., & Jafarkhani, H. (2009). Throughput maximization over slowly fading channels using quantized and erroneous feedback. IEEE Transactions on Communications, 57(9), 2528–2533.

    Article  Google Scholar 

  7. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes (4th ed.). NY: Tata McGraw-Hill.

    Google Scholar 

  8. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th ed.). Jamestown Road, London, England: Academic Press.

    MATH  Google Scholar 

  9. Steger, C., & Sabharwal, A. (2008). Single-input two-way SIMO channel: Diversity-multiplexing tradeoff with two-way training. IEEE Transactions on Wireless Communications, 7(12), 4877–4886.

    Article  Google Scholar 

  10. Aggarwal, V., & Sabharwal, A. (2008). Performance of multiple access channels with asymptotic feedback. IEEE Journal on Selected Areas in Communications, 26(2), 399–403.

    Google Scholar 

  11. Proakis, J. G. (2001). Digital communications (4th ed.). Singapore: McGraw Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhyacharan Bhaskar.

Appendix

Appendix

Performance measures like outage probability and average signal power are derived for 3-independent block fading channel (L = 3) as follows:

1.1 Outage Probability

1.1.1 Rayleigh Fading Channel

The outage probability for 3-block Rayleigh fading channel is obtained similarly by substituting L = 3 in (3). It is given as

$$ P_{\text{out,3}}^{\text{ray}} = \frac{ - 1}{{v^{2} }}\exp \left( \frac{3}{v} \right)A - \frac{{\sqrt {2^{R} \pi } }}{\sqrt v }\exp \left( {\frac{{2 - 2^{R + 1} \sqrt {2^{R} } }}{v}} \right) - B + 1, $$
(21)

where

$$ A = \left\{ {\int\limits_{1}^{\infty } {\exp \left( {\frac{{ - x_{1} }}{v}} \right)\left[ {\int\limits_{1}^{{\tfrac{{2^{3R} }}{{x_{1} }}}} {\left( {\frac{{ - x_{2} }}{v} - \frac{{2^{3R} }}{{x_{1} vx_{2} }}} \right)} dx_{2} } \right]dx_{1} } } \right\} \, ,\quad {\text{and}} \quad B = \int\limits_{0}^{1} {\exp } \left( {\frac{{ - 2^{3R} }}{{vx_{1} }} - \frac{{x_{1} }}{v}} \right)dx_{1} .v = \rho \left( {J_{T} } \right)P_{r} . $$

1.1.2 Nakagami Fading Channel

The outage probability for 3-block Nakagami fading channel is obtained similarly by substituting L = 3 in (3). It is given as

$$ P_{\text{out,3}}^{\text{nak}} = - uK_{1}^{3} \int\limits_{1}^{\infty } {\left( {x_{1} - 1} \right)}^{m - 1} \exp \left( {\frac{{ - x_{1} }}{u}} \right)\left\{ {\int\limits_{1}^{{\tfrac{{2^{3R} }}{{x_{1} }}}} {(x_{2} - 1)^{m - 1} \left( {\frac{{2^{3R} }}{{x_{1} x_{2} }} - 1} \right)}^{m - 1} \exp \left( {\frac{{ - x_{2} }}{u} - \frac{{u2^{3R} }}{{x_{1} x_{2} }}} \right)[B]dx_{2} } \right\}dx_{1} , $$
(22)

where \( u = \frac{{\rho (J_{T} )\Omega }}{m} \), \( K_{1} = \frac{{e^{{\tfrac{1}{u}}} }}{{(\rho (J_{T} ))^{m} \Gamma (m)}}\left( {\frac{m}{\Omega }} \right)^{m} \)

$$ B = \left\{ {1 + u(m - 1)\left( {B_{1} } \right)^{ - 1} + u^{2} (m - 1)(m - 2)\left( {B_{1} } \right)^{ - 2} + \cdots +\,\left( {B_{1} } \right)^{ - m + 1} u^{m - 1} (m - 1)(m - 2) \ldots (m - (m - 1))} \right\}, $$

and \( B_{1} = \left( {\frac{{2^{3R} }}{{x_{2} }} - 1} \right) \).

1.1.3 Weibull Fading Channel

The outage probability for a 3-block Weibull fading channel is obtained similarly by substituting L = 3 in (3). It is given as

$$ P_{\text{out,3}}^{wb} = \frac{{k^{2} }}{{4\lambda^{k} (\rho (J_{T} ))^{\frac{k}{2}} }}\sum\limits_{n = 0}^{\infty } {\frac{{( - 1)^{n} }}{n!(1 + n)}\left( {\frac{1}{\mu }} \right)^{1 + n} } \int\limits_{1}^{\infty } {\left( {x_{1} - 1} \right)}^{{\frac{k}{2} - 1}} \exp \left( { - \left( {\frac{{x_{1} - 1}}{{\lambda^{2} \rho (J_{T} )}}} \right)^{\frac{k}{2}} } \right)[A]dx_{1} , $$
(23)

where \( \mu = \lambda^{2} \rho (J_{T} ) \), \( A = \int\nolimits_{0}^{{t_{\hbox{max} } }} {t^{\nu - 1} } \exp \left( { - t^{\nu } } \right)\left( {\frac{{2^{3R} }}{{x_{1} \left( {t\mu + 1} \right)}} - 1} \right)^{1 + n} dt \), \( t_{\hbox{max} } = \frac{1}{\mu }\left( {\frac{{2^{3R} }}{{x_{1} }} - 1} \right) \), \( t = \frac{{x_{2} - 1}}{\mu }, \), \( \nu = \frac{k}{2} \).

1.2 Average Signal Power

1.2.1 Rayleigh Fading Channel

The average signal power P av for L = 3 is obtained from (17) as

$$ P_{\text{av,3}}^{\text{ray}} = \left\{ {\frac{ - 1}{{v^{2} }}\exp \left( \frac{3}{v} \right)A - \frac{{\sqrt {2^{R} \pi } }}{\sqrt v }\exp \left( {\frac{{2 - 2^{R + 1} \sqrt {2^{R} } }}{v}} \right) - B + 1} \right\}^{{ - \tfrac{1}{2}}} , $$
(24)

where \( v = \rho (J_{T} )P_{r} \), \( A = \left\{ {\int\nolimits_{1}^{\infty } {\exp \left( {\frac{{ - x_{1} }}{v}} \right)\left[ {\int\nolimits_{1}^{{\tfrac{{2^{3R} }}{{x_{1} }}}} {\left( {\frac{{ - x_{2} }}{v} - \frac{{2^{3R} }}{{x_{1} vx_{2} }}} \right)} dx_{2} } \right]dx_{1} } } \right\} \) and \( B = \int\nolimits_{0}^{1} {\exp } \left( {\frac{{ - 2^{3R} }}{{vx_{1} }} - \frac{{x_{1} }}{v}} \right)dx_{1} \).

1.2.2 Nakagami Fading Channel

The average signal power P av is obtained from (17) as

$$ P_{\text{av,3}}^{\text{nak}} = \left\{ { - uK_{1}^{3} \int\limits_{1}^{\infty } {\left( {x_{1} - 1} \right)}^{m - 1} \exp \left( {\frac{{ - x_{1} }}{u}} \right)\left[ {\int\limits_{1}^{{\tfrac{{2^{3R} }}{{x_{1} }}}} {(x_{2} - 1)^{m - 1} \left( {\frac{{2^{3R} }}{{x_{1} x_{2} }} - 1} \right)}^{m - 1} \exp \left( {\frac{{ - x_{2} }}{u} - \frac{{u2^{3R} }}{{x_{1} x_{2} }}} \right)[B]dx_{2} } \right]} \right\}^{{ - \tfrac{1}{2}}} , $$
(25)

where \( u = \frac{{\rho (J_{T} )\Omega }}{m} \), \( K_{1} = \frac{{e^{{\tfrac{1}{u}}} }}{{(\rho (J_{T} ))^{m} \Gamma (m)}}\left( {\frac{m}{\Omega }} \right)^{m} \), \( B = \left\{ {1 + u(m - 1)\left( {B_{1} } \right)^{ - 1} + u^{2} (m - 1)(m - 2)\left( {B_{1} } \right)^{ - 2} + \cdots + \left( {B_{1} } \right)^{ - m + 1} u^{m - 1} (m - 1)(m - 2) \ldots (m - (m - 1))} \right\}, \) and \( B_{1} = \left( {\frac{{2^{3R} }}{{x_{2} }} - 1} \right) \).

1.2.3 Weibull Fading Channel

The average signal power P av for L = 3, is obtained from (17) as

$$ P_{\text{av,3}}^{\text{wb}} = \left\{ {\frac{{k^{2} }}{{4\lambda^{k} \left( {\rho (J_{T} )} \right)^{{\tfrac{K}{2}}} }}\sum\limits_{n = 0}^{\infty } {\frac{{( - 1)^{n} }}{n!(1 + n)}\left( {\frac{1}{\mu }} \right)}^{1 + n} \int\limits_{1}^{\infty } {\left( {x_{1} - 1} \right)}^{{\tfrac{k}{2} - 1}} \exp \left( { - \left( {\frac{{x_{1} - 1}}{{\lambda^{2} \rho (J_{T} )}}} \right)^{{\tfrac{k}{2}}} } \right)\left[ A \right]dx_{1} } \right\}^{{ - \tfrac{1}{2}}} , $$
(26)

where \( \mu = \lambda^{2} \rho (J_{T} ) \), \( A = \int\nolimits_{0}^{{t_{\hbox{max} } }} {t^{\nu - 1} } \exp \left( { - t^{\nu } } \right)\left( {\frac{{2^{3R} }}{{x_{1} \left( {t\mu + 1} \right)}} - 1} \right)^{1 + n} dt \), \( t_{\hbox{max} } = \frac{1}{\mu }\left( {\frac{{2^{3R} }}{{x_{1} }} - 1} \right) \), \( t = \frac{{x_{2} - 1}}{\mu } \), \( \nu = \frac{k}{2} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, R., Bhaskar, V. Analysis of Outage Probability and Average Signal Power of Two Independent Block Fading Channel for a SISO System. Wireless Pers Commun 83, 2051–2068 (2015). https://doi.org/10.1007/s11277-015-2502-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2502-3

Keywords

Navigation