Skip to main content
Log in

An Optimized Regulator with 290 nA Quiescent Current and \(115\,\upmu \hbox {W}\) Power Consumption for UHF RFID Tags Using TLBO Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper a low power and low output ripple regulator is designed with teaching-learning-based optimization (TLBO) for radio frequency identification applications. In order to decrease the power consumption the voltage of regulator sub-blocks is supplied from elementary stages. In the proposed operational amplifier employed to the regulator, adaptive biasing is used and bandgap reference of the regulator is totally designed by MOSFET. To optimize the proposed regulator after modeling the regulator with the help of neural network, TLBO algorithm is used. The outputs of TLBO are output voltage, ripple value and power consumption. By using this algorithm the output voltage is 0.8 V with 2.78 mV ripple and \(115\,\upmu \hbox {W}\) power consumption. Also the quiescent current of this design is decreased to 290 nA. The chip area of the layout design in Cadence software is about \(0.00124\,\hbox {mm}^2\). The operation frequency of this circuit is 960 MHz and the simulation is done in \(0.18\,\upmu \hbox {m}\) CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yao, Y., Wu, J., Shi, Y., & Dai, F. F. (2009). A fully integrated 900-MHz passive RFID transponder front end with novel zero-threshold RFDC rectier. IEEE Transactions on Industrial Electronics, 56(7), 2317–2325.

    Article  Google Scholar 

  2. Balachandran, G. K., & Barnett, R. E. (2006). A 110 nA voltage regulator system with dynamic bandwidth boosting for RFID systems. IEEE Journal of Solid-State Circuits, 41(9), 2019–2028.

    Article  Google Scholar 

  3. Cesar, P., Crepaldi, C., Pimenta, T. C., Moreno, R. L., & Rodriguez, E Ch. (2012). A low power CMOS voltage regulator for a wireless blood pressure biosensor. IEEE Transactions on Instrumentation and Measurement, 61(3), 729–739.

    Article  Google Scholar 

  4. Lee, M. Ch., Hu, Ch. Ch., & Lin., Z. W. (2012). Implementation of low dropout regulator with low bandgap reference voltage circuit for RFID tag applications. In Cross strait quad-regional radio science and wireless technology conference (CSQRWC), pp. 40–43.

  5. Liu, C. E., Hsieh, Y. J., & Kiang, J. F. (2010). RFID regulator design insensitive to supply voltage ripple and temperature variation. IEEE Transactions on Circuits and Systems-II: Express Briefs, 57(4), 255–259.

    Article  MATH  Google Scholar 

  6. De Vita, G., & Iannaccone, G. (2006). Ultra-low-power series voltage regulator for passive RFID transponders with subthreshold logic. Electronics Letters, 42, 1350–1351.

    Article  Google Scholar 

  7. Salehi, M. R., Dastanian, R., Abiri, E., & Nejadhasan, S. (2015). A \(147\,\upmu \hbox{W}\), 0.8V and 7.5 (mV/V) LIR regulator for UHF RFID application. International Journal of Electronics and Communications (AEU), 69(1), 133–140.

  8. Magnelli, L., Crupi, F., Corsonello, P., Pace, C., & Iannaccone, G. (2011). A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE Journal of Solid-State Circuits, 46(2), 465–474.

    Article  Google Scholar 

  9. Anvesha, A., & Baghini, M. Sh. (2013). A Sub-1V 32 nA process, voltage and temperature invariant voltage reference circuit. In IEEE 12’ th international conference on VLSI design and 26th international conference on embedded systems (VLSID), pp. 136–141.

  10. Ma, H., Zhou, F. (2009). A Sub-1V 115 nA 0.35 μm CMOS voltage reference for ultra low power applications. IEEE 8’ th International conference on ASIC, pp. 1074–1077.

  11. Wilson, W., Chen, T., & Selby, R. (2013). A current-starved inverter-based differential amplifier design for ultra-low power applications. In IEEE 4’ th Latin American symposium on circuits and systems (LASCAS), pp. 1–4.

  12. Lopez-Martin, A. J., Baswa, S., Ramirez-Angulo, J., & Carvajal, R. G. (2005). Low-voltage super class AB CMOS OTA cells with very high slew rate and power efficiency. IEEE Journal of Solid-State Circuits, 40(5), 1068–1077.

    Article  Google Scholar 

  13. Bernal, M. R. V., Celma, S., Medrano, N., & Calvo, B. (2012). An ultralow-power low-voltage class-AB fully differential OpAmp for lond-life autonomous portable equipment. IEEE Transactions on Circuits and Systems-II, 59(10), 643–647.

    Article  Google Scholar 

  14. Dejhan, K., Suwanchatree, N., Prommee, P., Piangprantong, S., & Chaisayun, I. (2004). A CMOS voltage-controlled grounded resistor using a single power supply. IEEE ISCIT, 1, 124–127.

    Google Scholar 

  15. Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based optimization: A novel method for constrainedmechanical design optimization problems. Computer-AidedDesign, 43, 303–315.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Abiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiri, E., Dastanian, R., Salehi, M.R. et al. An Optimized Regulator with 290 nA Quiescent Current and \(115\,\upmu \hbox {W}\) Power Consumption for UHF RFID Tags Using TLBO Algorithm. Wireless Pers Commun 83, 2177–2192 (2015). https://doi.org/10.1007/s11277-015-2507-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2507-y

Keywords

Navigation