Skip to main content
Log in

Efficient Transmission of Encrypted Images with OFDM in the Presence of Carrier Frequency Offset

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the impact of carrier frequency offset (CFO) and CFO compensation on the transmission of encrypted images with different orthogonal frequency division multiplexing (OFDM) versions is studied. The investigated OFDM versions are the fast Fourier transform OFDM, the discrete cosine transform OFDM, and the discrete wavelet transform OFDM. A comparison between four encryption algorithms with images transmitted through different OFDM versions is presented. These algorithms are data encryption standard, advanced encryption standard, RC6, and chaotic Baker map. This comparison aims to select the most appropriate version of OFDM, and the most suitable image encryption algorithm for efficient image transmission. In the simulation experiments, the peak signal-to-noise ratio at the receiver is used as an evaluation metric for the decrypted image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44

Similar content being viewed by others

References

  1. Tan P., & Beaulieu, N. C. (2006). A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels. IEEE Transactions on Communications, 54(11), 2113–2125.

    Article  Google Scholar 

  2. Andrews, J. G., Ghosh, A. & Muhamed, R. (2007). Fundamentals of WiMAX understanding broadband wireless networking. In Prentice Hall communications engineering and emerging technologies series (pp. 113–145).

  3. Gao, F., Cui, T., Nallanathan, A., & Tellambura, C. (2008). Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non circular transmissions: Algorithms, analysis and comparisons. IEEE Transactions on Communications, 56(9), 1425–1429.

  4. Merched, R. (2006). On OFDM and signal-carrier frequency-domain systems based on trigonometric transforms. IEEE Signal Processing Letters, 13(8), 473–476.

    Article  Google Scholar 

  5. Tan, P., & Beaulieu, N. C. (2005). Precise bit error probability analysis of DCT OFDM in the presence of carrier frequency offset on AWGN channels. In Proceedings of the IEEE Globcom 2005 (pp. 1429–1434).

  6. Lawrey, E. P. (2001). Adaptive techniques for multiuser OFDM. Ph.D. thesis, James Cook University.

  7. Lawrey, E. (1997). The suitability of OFDM as a modulation technique for wireless telecommunications, with a CDMA comparison. Bachelor thesis, James Cook University.

  8. Dachselt, F., Kelber, K., & Schwarz, W. (1997). Chaotic coding and cryptoanalysis. Proceedings of IEEE international symposium on circuits and systems, Hong Kong, 9–12 June 1997 (pp. 1061–1064).

  9. Asiml, M., & Jeotil, V. (2007). On image encryption: Comparison between AES and a novel chaotic encryption scheme. In IEEE–ICSCN 2007, MIT Campus, Anna University, Chennai, India, 22–24 February 2007 (pp. 65–69).

  10. Schulze, H., & Luders, C. (2005). Theory and application of OFDM and CDMA wideband wireless communications (pp. 145–264). London: Wiley.

    Book  Google Scholar 

  11. Al-Dhahir, N., & Minn, H. (2005). A new multicarrier transceiver based on the discrete cosine transform. In Proceedings of the IEEE wireless communications and networking conference, 13–17 March 2005 (Vol. 1, pp. 45–50).

  12. Tan, P., & Beaulieu, N. C. (2005). An improved DCT-based OFDM data transmission scheme. In Proceedings of the IEEE 16th PIMRC’05.

  13. Harada, H., & Prasad, R. (2002). Simulation and software radio for mobile communications. London: House Universal Personal Communications Library.

    Google Scholar 

  14. Abdullah, K., & Hussain, Z. M. (2007). Performance of Fourier-based and wavelet-based OFDM for DVB-T systems. In Proceedings of the 2007 Australasian telecommunication networks and applications conference, Christchurch, New Zealand.

  15. Vats, V. B., Garg, K. K., & Abad, A. (2008). Performance analysis of DFT-OFDM, DCT-OFDM, and DWT-OFDM systems in AWGN. In Proceedings of the IEEE fourth international conference on wireless and mobile communications.

  16. Huang, D., & Letaief, K. B. (2005). An interference-cancellation scheme for carrier frequency offsets correction in OFDMA systems. IEEE Transactions on Communications, 53(7), 1155–1165.

    Article  Google Scholar 

  17. Coppersmith, D. (1994). The data encryption standard (DES) and its strength against attacks. IBM Journal of Research and Development, 38(3), 243–250.

  18. Nechvatal, J. (2000). Report on the development of the advanced encryption standard (AES). National Institute of Standards and Technology.

  19. Kim, G. H., Kim, J. N., & Cho, G. Y. (2009). An improved RC6 algorithm with the same structure of encryption and decryption. In ICACT.

  20. Daemen, J., & Rijmen, V. (2000). The block cipher Rijndael, smart card research and applications, LNCS 1820 (pp. 288–296). Berlin: Springer.

    Google Scholar 

  21. Federal Information Processing Standards Publication 197. Advanced Encryption Standard, November 2001.

  22. Daemen, J., & Rijmen, V. (1999). The Rijndael block cipher. AES Proposal: Rijndael, Document version 2.

  23. Buchholz, J. J. (2001). Matlab implementation of the advanced encryption standard.

  24. El-Fishawy, N., & Abu Zaid, O. M. (2007). Quality of encryption measurement of bitmap images with RC6, MRC6, and Rijndael block cipher algorithms. International Journal of Network Security, 5(3), 241–251.

    Google Scholar 

  25. Stinson, D. (2002). Cryptography: Theory and practice (2nd ed.). Boca Raton, USA: Chapman and Hall CRC.

    Google Scholar 

  26. Li, S., Zheng, X., Mou, X., & Cai, Y. (2002). Chaotic encryption scheme for real-time digital video. In Proceedings of SPIE (Vol. 4666, pp. 149–160).

  27. Li, S., Mou, X., & Cai, Y. (2001). Improving security of a chaotic encryption approach. Physics Letters A, 290(3–4), 127–133.

    Article  MathSciNet  Google Scholar 

  28. Han, F., Yu, X., & Han, S. (2006). Improved baker map for image encryption. In The 1st international symposium on systems and control in aerospace and astronautics (ISSCAA), 19–21 January 2006 (pp. 1273–1276).

  29. Lian, S., Sun, J., & Wang, Z. (2005). Security analysis of a chaos-based image encryption algorithm. Physica A: Statistical and Theoretical Physics, 351(2–4), 645–661.

    Article  Google Scholar 

  30. Pareek, N. K., Patidar, V., & Sud, K. K. (2005). Cryptography using multiple one-dimensional chaotic maps. Communications in Nonlinear Science and Numerical Simulation, 10(7), 715–723.

    Article  MathSciNet  Google Scholar 

  31. Chen, G., Zheng, X., & Li, S. (2004). Chaos-based encryption for digital images and videos. Multimedia Security Handbook. Boca Raton, USA: CRC Press.

    Google Scholar 

  32. Henk, C. A., & Tilborg, V. (2005). Encyclopedia of cryptography and security. Berlin: Springer.

    MATH  Google Scholar 

  33. Kim, D., & Stüber, G. L. (1998). Residual ISI cancellation for OFDM with applications to HDTV broadcasting. IEEE Journal on Selected Areas in Communications, 16(8), 1590–1599.

  34. Yang, G. H., Shen, D., & Li, V. O. K. (2004). UEP for video transmission in space–time coded OFDM systems. In IEEE INFOCOM.

  35. Rahman, M. I., Das, S. S., & Fitzek, F. H. P. (2005). OFDM based WLAN systems. Center for TeleInFrastruktur (CTiF), Technical report R-04-1002; v1.2, 18 February 2005.

  36. Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX understanding broadband wireless networking. Prentice Hall communications engineering and emerging technologies series (pp. 113–145).

  37. Zhang, J., & Li, B. (2008). New modulation identification scheme for OFDM in multipath Rayleigh fading channel. In International symposium on computer science and computational technology.

  38. Chu, H. S., Park, B. S., An, C. K., Kang, J. S. & Son, H. G. (2007). Wireless image transmission based on adaptive OFDM system. In IEEE.

  39. Mandyam, G. D. (2003). On the discrete cosine transform and OFDM systems. Nokia Research Center. 6000 Connection Drive, Irving, TX 75039 USA, IEEE, ICASSP 2003.

  40. Misiti, M., Misiti, Y., & Oppenheim, G. (2007). Wavelets and their applications. Jean-Michel Poggi published in Great Britain and the United States by ISTE Ltd.

  41. Prochazka, A., Uhlir, J., Rayner, P. J. W., & Kingsbury, N. J. (1998). Signal analysis and prediction. Basel: Birkhauser.

    Book  MATH  Google Scholar 

  42. Muquet, B., Wang, Z., Giannakis, G. B., Courville, M., & Duhamel, P. (2002). Cyclic prefixing or zero padding for wireless multicarrier transmissions. IEEE Transactions on Communications, 50(12).

  43. Li, B., Zhou, S., Stojanovic, M., Freitag, L., Willett, P. (2007). Non-uniform Doppler compensation for zero-padded OFDM over fast-varying under water acoustic channels. In OCEANS 2007—Europe, IEEE.

  44. Athaudage, C. R. N., & Angiras, R. R. V. (2005). Sensitivity of FFT-equalised zero-padded OFDM systems to time and frequency synchronization errors. IEE Proceedings-Communications, 152(6).

  45. Fridrich, J. (1998). Symmetric ciphers based on two-dimensional chaotic maps. International Journal of Bifurcation and Chaos, 8(6), 1259–1284.

  46. Yun-Peng, Z., Wei, L., Shui-Ping, C., Zheng-Jun, Z., Xuan, N., & Wei-Di, D. (2009). Digital image encryption algorithm based on chaos and improved DES. In IEEE international conference on systems, man and cybernetics (pp. 474–479).

  47. Wei-bin, C., & Xin, Z. (2009). Image encryption algorithm based on Henon chaotic system. In IEEE.

  48. Wang, X., & Zhao, D. (2006). Image encryption based on anamorphic fractional Fourier transform and three-step phase-shifting interferometry. Optics Communications, 268(2), 240–244.

  49. Liu, S., Sun, J., Xu, Z., & Liu, J. (2008). Analysis on an image encryption algorithm. In IEEE international workshop on education technology and training and 2008 international workshop on geoscience and remote sensing.

  50. Soliman, N. F., Albagory, Y., Elbendary, M. A. M., Al-Hanafy, W., El-Rabaie, E.-S. M., Alshebeili, S. A., & Abd El-Samie, F. E. (2014). Chaotic interleaving for robust image transmission with LDPC coded OFDM. Wireless Personnel Communications, 79, 2141–2154. doi:10.1007/s11277-014-1977-7.

    Article  Google Scholar 

  51. Cao, P., Hu, X. F., Wu, J., Zhang, L., Jiang, X., & Su, Y. (2014). Physical layer encryption in OFDM-PON employing time variable keys from ONUs. IEEE Photonics Journal, 6(2).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathi E. Abd El-Samie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldokany, I., El-Rabaie, ES.M., Elhalafawy, S.M. et al. Efficient Transmission of Encrypted Images with OFDM in the Presence of Carrier Frequency Offset. Wireless Pers Commun 84, 475–521 (2015). https://doi.org/10.1007/s11277-015-2645-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2645-2

Keywords

Navigation