Skip to main content
Log in

Continuous Phase Modulation with Chaotic Interleaving for Different OFDM Versions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a chaotic interleaving scheme for efficient data transmission with continuous-phase modulation orthogonal frequency-division multiplexing (CPM-OFDM) systems over fading channels. The idea of chaotic maps randomization (CMR) is exploited in this scheme. CMR generates permuted sequences from the sequences to be transmitted with lower correlation among their samples, and hence a better symbol error rate (SER) performance can be achieved. The performance of the proposed approach is tested on the conventional Fast fourier transform OFDM (FFT-OFDM), discrete wavelet transform OFDM (DWT–OFDM), and discrete cosine transform OFDM (DCT–OFDM). The proposed (FFT/DCT/DWT)-CPM-OFDM system with interleaving combines the advantages of frequency diversity and power efficiency from CPM-OFDM and performance improvement from chaotic interleaving. The SER performance of the (FFT/DCT/DWT)-CPM-OFDM system with and without chaotic interleaving is evaluated by computer simulations. Also, a comparison between chaotic interleaving and block interleaving is performed. Simulation results show that the chaotic interleaving scheme can greatly improve the performance of (FFT/DCT/DWT)-CPM-OFDM systems. Furthermore, the results show also that, the (FFT/DCT/DWT)-CPM-OFDM system provides a good trade-off between system performance and bandwidth efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bingham, J. (1990). Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine, 28, 5.

    Article  MathSciNet  Google Scholar 

  2. Weeks, M. (2007). Signal processing using matlab and wavelets. Hingham: Infinity Science Press.

    Google Scholar 

  3. Akansu, A. N., & Xueming, L. (1998). A comparative performance evaluation of DMT (OFDM) and DWMT (DSBMT) based DSL communications systems for single and multitone interference. In Proceedings of the IEEE international conference on acoustics, speech and signal processing.

  4. Tan, J., & Stüber, G. L. (2002). Constant envelope multi-carrier modulation. Proceedings of IEEE MILCOM, 1, 607–611.

    Google Scholar 

  5. Thompson, S. C., Ahmed, A. U., Proakis, J. G., & Zeidler, J. R. (2004). Constant envelope OFDM phase modulation: Spectral containment, signal space properties and performance. In IEEE Milcom, Monterey (Vol. 2, pp. 1129–1135).

  6. Thompson, S. C., & Ahmed, A. U. (2008). Constant-envelope OFDM. IEEE Transactions on Communications, 56(8), 1300–1312.

    Article  Google Scholar 

  7. Tsai, Y., Zhang, G., & Pan, J.-L. (2005). Orthogonal frequency division multiplexing with phase modulation and constant envelope design. IEEE Milcom, 4, 2658–2664.

    Google Scholar 

  8. Barbieri, A., Fertonani, D., & Colavolpe, G. (2009). Spectrally efficient continuous phase modulations. IEEE Transactions on Wireless Communications, 8(3), 1564–1572.

    Article  Google Scholar 

  9. Le-Ngoc, T., Tran, N. H., & Nguyen, H. H. (2007). Bit-interleaved coded OFDM with signal space diversity: Subcarrier grouping and rotation matrix design. IEEE Transactions on Signal Processing, 50, 1137.

    MathSciNet  Google Scholar 

  10. El-Bakary, S. A. E.-D. E. M., Zahran, O., & El-Samie, F. E. A. (2009). Chaotic maps: A tool to enhance the performance of OFDM systems. International Journal of Communication Networks and Information Security, 1, 54.

    Google Scholar 

  11. Wang, Y., & Zhu, Q. F. (1998). Error control and concealment for video communication: A review. Proceedings of the IEEE, 86, 974–997.

    Article  Google Scholar 

  12. Sung, J. H. C. K., & Lee, I. (2007). Adaptive bit-interleaved coded OFDM with reduced feedback information. IEEE Transactions on Communications, 55(9), 1649–11655.

    Article  Google Scholar 

  13. Lei, S., & Lau, V. K. N. (2002). Performance analysis of adaptive interleaving for OFDM Systems. IEEE Transactions on Vehicular Technology, 51, 435–444.

    Article  Google Scholar 

  14. Harada, H., & Prasad, R. (2002). Simulation and software radio for mobile communications. Norwood: Artech House.

    Google Scholar 

  15. Abdullah, K., & Hussain, Z. M. (2009, February). Studies on DWT–OFDM and FFT–OFDM systems. In International conference on communication, computer and power.

  16. Sharma, S., & Kumar, S. (2011). BER performance evaluation of FFT–OFDM and DWT–OFDM. International Journal of Network and Mobile Technologies, 2, 110–116.

    Google Scholar 

  17. Proakis, J. G., Thompson, S. C., & Zeidler, J. R. (2003). Constant envelope binary OFDM phase modulation. In Proceedings o the 23rd military communication conference, Baltimore, MD, USA.

  18. Proakis, J. G., Thompson, S. C., Ahmed, A. U., & Zeidler, J. R. (2004). Constant envelope OFDM phase modulation: Spectral containment, signal space properties and performance. In Proceedings o the 23rd military communication conference, Baltimore, MD, USA.

  19. Zhang, G., Tsai, Y., & Pan, J. L. (2005). Orthogonal frequency division multiplexing with phase modulation and constant envelope design. In Proceedings o the 23rd military communication conference, Baltimore, MD, USA.

  20. Proakis, J. G., Thompson, S. C., & Zeidler, J. R. (2005). Noncoherent reception of constant envelope OFDM in flat fading channels. In Proceedings of the IEEE 16th international symposium on PIMRC, Baltimore, MD, USA.

  21. Aulin, T., Anderson, J. B., & Sundberg, C.-E. W. (1986). Digital phase modulation. New York: Plenum.

    Google Scholar 

  22. Anderson, J. B., & Svensson, A. (2003). Coded modulation systems. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  23. Stark, W. E., Liang, C.-P., Jong, J., & East, J. (1999). Nonlinear amplifier effects in communications systems. IEEE Transactions on Microwave Theory and Techniques, 47(8), 1461–1466.

    Article  Google Scholar 

  24. Fridrich, J. (1998). Symmetric ciphers based on two-dimensional chaotic maps. International Journal of Bifurcation and Chaos, 8, 1259–1284.

    Article  MathSciNet  MATH  Google Scholar 

  25. El-Khamy, S. E., Dessouky, M. I., El-Dolil, S. A., Abd El-Samie, F. E., Hassan, E. S., & Zhu, X. (2011). Performance evaluation of OFDM and single-carrier systems using frequency domain equalization and phase modulation. International Journal of Communication Systems, 24, 1–13.

    Article  Google Scholar 

  26. Ahmed, A. U., & Thompson, S. C. (2008). Constant-envelope OFDM. IEEE Transactions on Communications, 56, 1300–1312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moataz Samir.

Appendix: Channel Model

Appendix: Channel Model

Channel \( {\text{C}}_{\text{f}} \) has an exponential delay power spectral density:

$$ \upsigma_{{\upalpha_{\text{l}} ,{\text{C}}}}^{2} = \left\{ {\begin{array}{*{20}l} {{\text{C}}_{{{\text{C}}_{\text{f}} }} {\text{e}}^{{ -\uptau_{\text{l}} /2\,\upmu{\text{s}}}} } \hfill & {0 \le\uptau_{\text{l}} \le 8.75\,\upmu{\text{s}}} \hfill \\ 0 \hfill & {\text{otherwise}} \hfill \\ \end{array} } \right. $$
(13)

where \( {\text{C}}_{{{\text{C}}_{\text{f}} }} \) is the normalization constant and given by,

$$ {\text{C}}_{{{\text{C}}_{\text{f}} }} = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {\sum\nolimits_{{{\text{l}} - 0}}^{35} {\exp \left( { - \frac{{\uptau_{\text{l}} }}{{2{\text{e}}^{ - 6} }}} \right) = 0.1188} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\sum\nolimits_{{{\text{l}} - 0}}^{35} {\exp \left( { - \frac{{\uptau_{\text{l}} }}{{2{\text{e}}^{ - 6} }}} \right) = 0.1188} }$}}. $$
(14)

The effective double-sided bandwidth of the message signal \( {\text{x}}\left( {\text{t}} \right) \) is defined as \( {\text{W}} = {\text{K}}/{\text{T}} \) Hz. According to Eq. (12), the bandwidth of \( {\text{s}}_{\text{I}} \left( {\text{t}} \right) \) is at least W, where the \( {\text{n}} = 0 \) term contains no information, and thus has zero bandwidth, the \( {\text{n}} = 1 \) term is the message signal and has bandwidth \( {\text{W}}, \) the \( {\text{n}} = 2 \) term has a bandwidth \( 2{\text{W}} \), and so on. As a result, due to the \( {\text{n}} = 1 \) term, the bandwidth of \( {\text{s}}_{\text{I}} \left( {\text{t}} \right) \) is at least \( {\text{W}} \). Depending on the modulation index \( {\text{h}}_{\text{in}} \), the effective bandwidth can be greater than \( {\text{W}} \). The bandwidth efficiency in CPM-based systems η can be expressed as

$$ \upeta = \frac{\text{R}}{\text{BW}} = \frac{{{ \log }_{2} {\text{M}}}}{{{ \hbox{max} }\left( {2\uppi{\text{h}}_{\text{in}} ,1} \right)}}\,{\text{bps}}/{\text{Hz}} $$
(15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hamid, Z.A., Samir, M., Zekry, A. et al. Continuous Phase Modulation with Chaotic Interleaving for Different OFDM Versions. Wireless Pers Commun 85, 697–710 (2015). https://doi.org/10.1007/s11277-015-2803-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2803-6

Keywords

Navigation