Skip to main content
Log in

Analysis on Direction Finding Sensitivity of MIMO Radar with System Errors

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Direction finding sensitivities (DFSs) analysis is an integral part of the high-performance radar system design and calibration of various parameters. Based on the first-order sensitivity analysis of MUSIC algorithm to system errors (SEs) which cause differences between the array manifold used by MUSIC and the true array manifold, the direction finding sensitivity for colocated MIMO radar is investigated. The performance of direction finding in the presence of phase, gain or location errors of the element in transmit and receive array and the effect of virtual extend ability for MIMO radar with respect to system errors is further analyzed and tested by simulation. Additionally, for a given arbitrary antenna geometry, the formulas of DFSs and MSEs for MIMO radar using MUSIC algorithm are developed for relatively small SEs. And the formula for computing the ambiguity thresholds of the MUSIC algorithm as a function of target separation and other DF system parameters are derived for relatively large SEs. The presented analysis methods and related conclusions could be as the complement of MIMO radar system analysis and design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fisher, E., Haimovich, A., Blum, R. S., et al. (2006). Spatial diversity in radar models and detection performance. IEEE Transactions on Signal Processing, 54(3), 823–838.

    Article  Google Scholar 

  2. Sun, P. L., Tang, J., He, Q., Tang, B., & Tang, X. W. (2013). Cramer–Rao bounds of parameters estimation and coherence performance for next generation radar. IET Radar, Sonar and Navigation, 7(5), 553–567.

    Article  Google Scholar 

  3. Huleihel, W., Tabrikian, J., & Shavit, R. (2013). Optimal adaptive waveform design for cognitive MIMO radar. IEEE Transactions on Signal Processing, 61(20), 5075–5089.

  4. Tang, B., Tang, J., Zhang, Y., & Zheng, Z. D. (2013). Maximum likelihood estimation of DOD and DOA for bistatic MIMO radar. Signal Processing, 93(5), 1349–1357.

    Article  MathSciNet  Google Scholar 

  5. Zhang, X., Xu, L., & Xu, D. (2010). Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduce-dimensional music. IEEE Communications Letters, 14(12), 1161–1163.

    Article  Google Scholar 

  6. Bencheikh, M. L., & Wang, Y. (2010). Joint DOD–DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar. IEE Electronics Letters, 46(15), 2686–2691.

    Article  Google Scholar 

  7. Li, C. C., Liao, G. S., Zhu, S. Q., et al. (2011). An ESPRIT-like algorithm for coherent DOD estimation based on data matrix decomposition in MIMO radar. Signal Processing, 2011(91), 1803–1811.

    Article  MATH  Google Scholar 

  8. Zheng, G. M., Chen, B. X., & Yang, M. L. (2012). Unitary ESPRIT algorithm for bistatic MIMO radar. Electronics Letters, 48(3), 179–181.

    Article  Google Scholar 

  9. Zheng, Z. D., & Zhang, J. Y. (2011). Fast method for multi-target localization in bistatic MIMO radar. IEE Electronics Letters, 47(2), 458–459.

    Google Scholar 

  10. Jiang, H., Zhang, Y., Li, J., & Cui, H. J. (2013). A PARAFAC-based algorithm for multidimensional parameter estimation in polarimetric bistatic MIMO radar. EURASIP Journal on Advances in Signal Processing, 2013(1), 1–14.

    Google Scholar 

  11. Liao, B., & Chan, S. C. (2012). Direction finding with partly calibrated uniform linear arrays. IEEE Transactions on Antennas and Propagation, 60(2), 922–929.

    Article  MathSciNet  Google Scholar 

  12. Liu, X. L., & Liao, G. S. (2012). Direction finding and mutual coupling estimation for bistatic MIMO radar. Signal Processing, 92(8), 517–522.

    Article  MathSciNet  Google Scholar 

  13. Zheng, Z. D., Zhang, J. Y., & Wu, Y. B. (2012). Multi-target localization for bistatic MIMO radar in the presence of unknown mutual coupling. Journal of Systems of Engineering and Electronics, 23(5), 708–714.

    Article  Google Scholar 

  14. Friedlander, B. (1990). Sensitivity analysis of the maximum likelihood direction finding algorithm. IEEE Transactions on Aerospace and Electronic Systems, 26(6), 951–968.

    Article  Google Scholar 

  15. Friedlander, B. (1990). A sensitivity analysis of the MUSIC algorithm. IEEE Transactions on Acoust., Speech Signal Processing, 38(10), 1740–1750.

    Article  Google Scholar 

  16. Ferreol, A., Larzabal, P., & Viberg, M. (2008). On the resolution probability of MUSIC in presence of modeling errors. IEEE Transactions on Signal Processing, 56(5), 1945–1953.

    Article  MathSciNet  Google Scholar 

  17. Chen, H. W., Zhou, W., Yang, J., You, P., & Li, X. (2012). Manifold sensitivity analysis for MIMO radar. IEEE Geoscience and Remote Sensing Letters, 9(5), 999–1003.

    Article  Google Scholar 

  18. Chen, H. W., Li, X., Jiang, W. D., & Zhuang, Z. W. (2012). MIMO radar sensitivity analysis of antenna position for direction finding. IEEE Transactions on Signal Processing, 60(10), 5201–5216.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (60702015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liang.

Appendix: Computation of Derivatives

Appendix: Computation of Derivatives

In the “Appendix”, we provide the derivative results which can be used to compute the DFSs index in (19), the DF MSEs in (22) and (23) and ambiguity thresholds in (28) when using MUSIC algorithm.

1.1 Derivatives with respect to target direction \({\varvec{\Upsilon}}\)

The derivation of function \(F\left( {{\varvec{\Upsilon}} ;{\varvec{\Theta}} } \right)\) in (13) with respect to \({\varvec{\Upsilon}}\) is defined as following

$$F_{1} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right) = \frac{{\partial F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial {\varvec{\Upsilon}}}} = \left[ {\frac{{\partial F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial \theta }},\frac{{\partial F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial \varphi }}} \right]^{T} = \left[ {\frac{{\partial F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} }}} \right] \in {\mathbb{C}}^{{2 \times 1}}$$
(29)

where \(i = 1,2\); Furthermore, \({\left( {\varvec{\Upsilon}} \right)_1} = \theta\) and \({\left( {\varvec{\Upsilon}} \right)_2} = \varphi\). And

$${{\partial F\left( {{\varvec{\Upsilon}} ;{\varvec{\Theta}} } \right)} \over {\partial {{\left( {\varvec{\Upsilon}} \right)}_i}}} = {{\partial {{{\varvec{A}}}^H}\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)} \over {\partial {{\left( {\varvec{\Upsilon}} \right)}_i}}}P_{{\varvec{A}}}^\bot \left( {\varvec{\Theta}} \right)A\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right) + {{{\varvec{A}}}^H}\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)P_{{\varvec{A}}}^\bot \left( {\varvec{\Theta}} \right){{\partial A\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)} \over {\partial {{\left( {\varvec{\Upsilon}} \right)}_i}}} = 2{\mathop{\rm Re}\nolimits} \left\{ {{{{\varvec{A}}}^H}\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)P_{{\varvec{A}}}^\bot \left( {\varvec{\Theta}} \right){{\partial A\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)} \over {\partial {{\left( {\varvec{\Upsilon}} \right)}_i}}}} \right\}$$
(30)

With

$${{\partial A\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)} \over {\partial {{\left( {\varvec{\Upsilon}} \right)}_i}}} = - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)diag\left( {{L^T}{{\dot k}_{{{\left( {\varvec{\Upsilon}} \right)}_i}}}} \right)A\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)$$
(31)

And

$${\dot k_{{{\left( {\varvec{\Upsilon}} \right)}_i}}} = {{\partial k} \over {\partial {{\left( {\varvec{\Upsilon}} \right)}_i}}} = \left\{\begin{array}{l} {{{\left[ { - \cos \varphi \sin \theta ,\cos \varphi \cos \theta ,0} \right]}^T}} \quad {i = 1}\\ {{{\left[ { - \sin \varphi \cos \theta , - \sin \varphi \sin \theta ,\cos \varphi } \right]}^T}} \quad {{i = 2}} \end{array} \right.$$
(32)

In summary, (30) can be written by

$${{\partial F\left( {{\varvec{\Upsilon}} ;{\varvec{\Theta}} } \right)} \over {\partial {{\left( {\varvec{\Upsilon}} \right)}_i}}} = 2{\mathop{\rm Re}\nolimits} \left\{ {{{{\varvec{A}}}^H}\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)P_{{\varvec{A}}}^\bot \left( {\varvec{\Theta}} \right)diag\left( { - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right){L^T}{{\dot k}_{{{\left( {\varvec{\Upsilon}} \right)}_i}}}} \right)A\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)} \right\}$$
(33)

The second derivation of function \(F\left( {{\varvec{\Upsilon}} ;{\varvec{\Theta}} } \right)\) in (13) with respect to \({\varvec{\Upsilon}}\) is defined as following

$$\frac{{\partial F_{1} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial {\varvec{\Upsilon}}}} = \frac{{\partial ^{2} F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial {\varvec{\Upsilon}}\partial {\varvec{\Upsilon}}^{T} }} = \left[ {\frac{{\partial ^{2} F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }}} \right] \in {\mathbb{C}}^{{2 \times 2}}$$
(34)

where \(i,i' = 1,2\), and

$$\begin{aligned} \frac{{\partial ^{2} F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }} &= \frac{{\partial ^{2} {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }}{{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right){{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right) + \frac{{\partial {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} }}{{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)\frac{{\partial {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }} + \frac{{\partial {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }}{{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)\frac{{\partial {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} }} +{{\varvec{A}}} A^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right){{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)\frac{{\partial ^{2} {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }} \\ & = 2\text{Re} \left\{ {\frac{{\partial {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} }}{{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)\frac{{\partial {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }} + {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right){{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)\frac{{\partial ^{2} {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }}} \right\} \\ \end{aligned}$$
(35)

where

$${{\partial A\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)} \over {\partial {{\left( {\varvec{\Upsilon}} \right)}_i}\partial {{\left( {\varvec{\Upsilon}} \right)}_{i'}}}} = - \left[ {j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)diag\left( {{L^T}\dot k_{{{\left( {\varvec{\Upsilon}} \right)}_i}{{\left( {\varvec{\Upsilon}} \right)}_{i'}}}^2} \right) + {{\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)}^2}diag\left( {{L^T}{{\dot k}_{{{\left( {\varvec{\Upsilon}} \right)}_i}}}} \right)diag\left( {{L^T}{{\dot k}_{{{\left( {\varvec{\Upsilon}} \right)}_{i'}}}}} \right)} \right]A\left( {{\varvec{\Upsilon}} ;{{\varvec{\Theta}}_0}} \right)$$
(36)

and

$$\dot k_{{{\left( {\varvec{\Upsilon}} \right)}_i}{{\left( {\varvec{\Upsilon}} \right)}_{i'}}}^2 = {{\partial k} \over {\partial {{\left( {\varvec{\Upsilon}} \right)}_i}\partial {{\left( {\varvec{\Upsilon}} \right)}_{i'}}}} = \left\{ {\begin{array}{ll} {{{\left[ { - \cos \varphi \cos \theta , - \cos \varphi \sin \theta ,0} \right]}^T}} & {i = i' = 1} \\ {{{\left[ {\sin \varphi \sin \theta , - \sin \varphi \cos \theta ,0} \right]}^T}} & {i \ne i'} \\ {{{\left[ { - \cos \varphi \cos \theta , - \cos \varphi \sin \theta , - \sin \varphi } \right]}^T}} & {i = i' = 2}\end{array}}\right.$$
(37)

Then (35) can be written by

$$\begin{aligned} \frac{{\partial ^{2} F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }} &= 2\text{Re} \left\{ {\frac{{\partial {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} }}{{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)\frac{{\partial {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }} + {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right){{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)\frac{{\partial {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }}} \right\} \\ &= 2\text{Re} \left\{ \begin{array}{l} \left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{2} {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)\left( {diag\left( {{{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{i} }} } \right)} \right)^{H} {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)diag\left( {{{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{{i'}} }} } \right){{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right) \\ - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right){{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right){{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)diag\left( {{{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{i} \left( {\varvec{\Upsilon}} \right)_{{i'}} }}^{2} } \right){{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right) \\ - \left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{2} {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right){{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)diag\left( {{{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{i} }} } \right)diag\left( {{{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{{i'}} }} } \right){{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right) \\ \end{array} \right\} \\ \end{aligned}$$
(38)

1.2 Derivatives with Respect to SEs Parameter \({\varvec{\Theta}}\)

The second derivative of \(F\left( {{\varvec{\Upsilon}} ;{\varvec{\Theta}} } \right)\) with respect to \({\varvec{\Upsilon}}\) and \({\varvec{\Theta}}\) is a \(2 \times length\left( {\varvec{\Theta}} \right)\) matrix, defined by

$$\frac{{\partial F^{2} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial {\varvec{\Upsilon}}\partial {{\varvec{\Theta}}}^{T} }} = \frac{{\partial F_{1} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial {{\varvec{\Theta}}}^{{{{\bf T}}}} }} = \left[ {\frac{{\partial F^{2} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {{\varvec{\Theta}}} \right)_{k} }}} \right] \in {\mathbb{C}}^{{2 \times length\left( {{\varvec{\Theta}}} \right)}}$$
(39)

where \(i = 1,2;k = 1, \ldots ,length\left( {\varvec{\Theta}} \right)\),\({\left( {\varvec{\Theta}} \right)_k}\) is kth element of vector \({\varvec{\Theta}}\), we can easily get that

$$\begin{aligned} \frac{{\partial F^{2} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {{\varvec{\Theta}}} \right)_{k} }} &= \frac{{\partial {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} }}\frac{{\partial {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}{{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right) + {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)\frac{{\partial {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}\frac{{\partial {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} }} \\ & = 2\text{Re} \left\{ {{{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)\frac{{\partial {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}diag\left( { - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right){{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{i} }} } \right){{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)} \right\} \\ \end{aligned}$$
(40)

The third derivative of \(F\left( {{\varvec{\Upsilon}} ;{\varvec{\Theta}} } \right)\) with respect to \({\varvec{\Upsilon}}\) and \({\varvec{\Theta}}\) is a \(2 \times length\left( {\varvec{\Theta}} \right)\) matrix, defined by

$$\frac{{\partial ^{3} F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial {\varvec{\Upsilon}}\partial {\varvec{\Upsilon}}^{T} \partial {{\varvec{\Theta}}}^{T} }} = \frac{{\partial F_{2} \left( {{\varvec{\Upsilon}}_{0} ;{\varvec{\Theta}}} \right)}}{{\partial {{\varvec{\Theta}}}}} = \left[ {\frac{{\partial ^{3} F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {\varvec{\Upsilon}} \right)_{{i'}} \partial \left( {{\varvec{\Theta}}} \right)_{k} }}} \right] \in {\mathbb{C}}^{{2 \times 2length\left( {{\varvec{\Theta}}} \right)}}$$
(41)

where \(i,i' = 1,2;k = 1, \ldots ,length\left( {\varvec{\Theta}} \right)\), and

$$\begin{aligned} \frac{{\partial ^{3} F\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}} \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {\varvec{\Upsilon}} \right)_{{i'}} \partial \left( {{\varvec{\Theta}}} \right)_{k} }} &= \frac{{\partial ^{2} {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} \partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }}\frac{{\partial {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}{{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right) + \frac{{\partial {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} }}\frac{{\partial {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}\frac{{\partial {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }} \\ &\quad + \frac{{\partial {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{{i'}} }}\frac{{\partial {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}\frac{{\partial {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{i} }} + {{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)\frac{{\partial {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}\frac{{\partial ^{2} {{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)}}{{\partial \left( {\varvec{\Upsilon}} \right)_{{i'}} \partial \left( {\varvec{\Upsilon}} \right)_{i} }} \\ &= 2\text{Re} \left\{ {\left[ \begin{array}{l} j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)diag\left( {{{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{i} \left( {\varvec{\Upsilon}} \right)_{{i'}} }}^{2} } \right)^{H} \\ - \left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{2} diag\left( {{{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{i} }} } \right)^{H} diag\left( {{{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{{i'}} }} } \right)^{H} \\ \; + \left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-\nulldelimiterspace} \lambda }} \right)^{2} diag\left( {{{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{i} }} } \right)^{H} diag\left( {{{\varvec{L}}}^{T} {\dot{{\varvec{k}}}}_{{\left( {\varvec{\Upsilon}} \right)_{{i'}} }} } \right) \\ \end{array} \right]{{\varvec{A}}}^{H} \left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)\frac{{\partial {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}{{\varvec{A}}}\left( {{{\varvec{\Upsilon}};{\varvec{\Theta}}}_{0} } \right)\;} \right\} \\ \end{aligned}$$
(42)

The derivative of orthogonal projection matrix \(P_{{\varvec{A}}}^\bot \left( {\varvec{\Theta}} \right)\) with respect to \({\varvec{\Theta}}\), defined by

$$\begin{aligned} \frac{{\partial {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }} &= - \frac{{\partial {{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}\left( {{{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right){{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)} \right)^{{ - 1}} {{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right) - {{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)\left( {{{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right){{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)} \right)^{{ - 1}} \frac{{\partial {{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}\\ &\quad + {{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)\left( {{{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right){{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)} \right)^{{ - 1}} \frac{{\partial {{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}{{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)\left( {{{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right){{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)} \right)^{{ - 1}} {{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right) \\ &\quad + {{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)\left( {{{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right){{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)} \right)^{{ - 1}} {{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right)\frac{{\partial {{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}\left( {{{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right){{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)} \right)^{{ - 1}} {{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right) \\ & = - {{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right)\frac{{\partial {{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}\left( {{{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right){{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)} \right)^{{ - 1}} {{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right) - {{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)\left( {{{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right){{\varvec{A}}}\left( {{\varvec{\Theta}}} \right)} \right)^{{ - 1}} \frac{{\partial {{\varvec{A}}}^{H} \left( {{\varvec{\Theta}}} \right)}}{{\partial \left( {{\varvec{\Theta}}} \right)_{k} }}{{\varvec{P}}}_{{{\varvec{A}}}}^{ \bot } \left( {{\varvec{\Theta}}} \right) \\ \end{aligned}$$
(43)

where \(k = 1, \ldots ,length\left( {\varvec{\Theta}} \right)\). For all the choices of \({\varvec{\Theta}}\) which are of interest in this paper, the derivative of \(A\left( {\varvec{\Theta}} \right)\) with respect to the elements of \({\varvec{\Theta}}\) have the following form

$${{\partial A\left({\varvec{\Theta}} \right)} \over {\partial {\varvec{\Theta}} }} = \left[ \begin{array}{c} {{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {{\left( {\varvec{\Theta}} \right)}_1}}}} \\ \vdots \\ {{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {{\left( {\varvec{\Theta}} \right)}_{length\left( {\varvec{\Theta}} \right)}}}}} \end{array} \right],\quad \frac{\partial A\left( {\varvec{\Theta}} \right)} {\partial {{\left( {\varvec{\Theta}} \right)}_k}} = {w_k} = \left[ \begin{array}{c} 0 \\ \vdots \\ {W_k} \\ \vdots \\ 0 \\ \end{array} \right]$$
(44)

For convenience, we define a matrix \(W\) which consists of these \({W_k}\) ‘s stacked as follows:

$$W = \left[ \begin{array}{c} {W_1} \cr \vdots \cr {{W_{length\left( {\varvec{\Theta}} \right)}}} \cr \end{array} \right]$$
(45)

\({\varvec{\Theta}}\) may refer to the sensor gains, phases, the sensor locations. Next we specialize the results for particular choices of \({\varvec{\Theta}}\).

(B.1) Derivatives with respect to phase, means \({\varvec{\Theta}} = \left[ {{\varPhi_t},{\varPhi_r}} \right] = {\left[ {{e^{j\phi_t^1}}, \ldots ,{e^{j\phi_t^{M_t}}},{e^{j\phi_r^1}}, \ldots ,{e^{j\phi_r^{M_r}}}} \right]^T}\) and \(length\left( {\varvec{\Theta}} \right) = {M_t} + {M_r}\). Note that \({{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\varvec{\Theta}} }} = {\left[ {{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial \phi_t^T}},{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial \phi_r^T}}} \right]^T}\), and

$${{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial \phi_t^T}} = {{\partial A_t\left( {\varvec{\Theta}} \right)} \over {\partial \phi_t^T}} \odot {A_r}\left( {\varvec{\Theta}} \right) = \left[ {{{\partial a_t\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right)} \over {\partial g_t^T}} \otimes {a_r}\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right), \ldots ,{{\partial a_t\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right)} \over {\partial g_t^T}} \otimes {a_r}\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right)} \right] = jA_t\left( {\varvec{\Theta}} \right) \odot {A_r}\left( {\varvec{\Theta}} \right) = jA\left( {\varvec{\Theta}} \right)$$
(46)
$${{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial \phi_r^T}} = A_t\left( {\varvec{\Theta}} \right) \odot {{\partial {A_r}\left( {\varvec{\Theta}} \right)} \over {\partial \phi_r^T}} = \left[ {a_t\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right) \otimes {{\partial {a_r}\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right)} \over {\partial \phi_r^T}}, \ldots ,a_t\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right) \otimes {{\partial {a_r}\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right)} \over {\partial \phi_r^T}}} \right] = jA_t\left( {\varvec{\Theta}} \right) \odot {A_r}\left( {\varvec{\Theta}} \right) = jA\left( {\varvec{\Theta}} \right)$$
(47)

Finally, It is obvious that

$${W_{{\text{Phase}}}} = \left[ \begin{array}{c} {jA\left( {\varvec{\Theta}} \right)} \\ {jA\left( {\varvec{\Theta}} \right)} \end{array}\right]$$
(48)

(B.2) Derivatives with respect to gain, means \({\varvec{\Theta}} = \left[ {g_t^T,g_r^T} \right] = \left[ {g_t^1, \ldots ,g_t^{M_t},g_r^1, \ldots ,g_r^{M_r}} \right]\) and \(length\left( {\varvec{\Theta}} \right) = {M_t} + {M_r}\), Note that \({{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\varvec{\Theta}} }} = {\left[ {{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial g_t^T}},{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial g_r^T}}} \right]^T}\), and

$${{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial g_t^T}} = {{\partial A_t\left( {\varvec{\Theta}} \right)} \over {\partial g_t^T}} \odot {A_r}\left( {\varvec{\Theta}} \right) = \left[ {{{\partial a_t\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right)} \over {\partial g_t^T}} \otimes {a_r}\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right), \ldots ,{{\partial a_t\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right)} \over {\partial g_t^T}} \otimes {a_r}\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right)} \right] = \left( {{\varPhi_t}{{\tilde A}_t}\left( \beta \right)} \right) \odot \left( {{\varGamma_r}{\varPhi_r}{{\tilde A}_r}\left( \beta \right)} \right)$$
(49)
$${{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial g_r^T}} = A_t\left( {\varvec{\Theta}} \right) \odot {{\partial {A_r}\left( {\varvec{\Theta}} \right)} \over {\partial g_r^T}} = \left[ {a_t\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right) \otimes {{\partial {a_r}\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right)} \over {\partial g_r^T}}, \ldots ,a_t\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right) \otimes {{\partial {a_r}\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right)} \over {\partial g_r^T}}} \right] = \left( {{\varGamma_t}{\varPhi_t}{{\tilde A}_t}\left( \beta \right)} \right) \odot \left( {{\varPhi_r}{{\tilde A}_r}\left( \beta \right)} \right)$$
(50)

Finally, It is obvious that

$${W_{{\text{Gain}}}} = \left[ \begin{array}{c} {\left( {{\varPhi_t}{{\tilde A}_t}\left( \beta \right)} \right) \odot \left( {{\varGamma_r}{\varPhi_r}{{\tilde A}_r}\left( \beta \right)} \right)} \\ {\left( {{\varGamma_t}{\varPhi_t}{{\tilde A}_t}\left( \beta \right)} \right) \odot \left( {{\varPhi_r}{{\tilde A}_r}\left( \beta \right)} \right)} \end{array} \right]$$
(51)

(B.3)Derivatives with respect to location, means \({\varvec{\Theta}} = \left[ {{\beta_t},{\beta_r}} \right] = {\left[ {{\bf{t}}_x^T,{\bf{t}}_y^T,{\bf{t}}_z^T,{\bf{r}}_x^T,{\bf{r}}_y^T,{\bf{r}}_z^T} \right]^T}\) and \(length\left( {\varvec{\Theta}} \right) = 3\left( {{M_t} + {M_r}} \right)\), Note that \({{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\varvec{\Theta}} }} = {\left[ {{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\bf{t}}_x^T}},{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\bf{t}}_y^T}},{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\bf{t}}_z^T}},{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\bf{r}}_x^T}},{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\bf{r}}_y^T}},{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\bf{r}}_z^T}}} \right]^T}\), and

$${{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\bf{t}}_p^T}} = {{\partial A_t\left( {\varvec{\Theta}} \right)} \over {\partial {\bf{t}}_p^T}} \odot {A_r}\left( {\varvec{\Theta}} \right) = \left[ {{{\partial a_t\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right)} \over {\partial {\bf{t}}_p^T}} \otimes {a_r}\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right), \ldots ,{{\partial a_t\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right)} \over {\partial {\bf{t}}_p^T}} \otimes {a_r}\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right)} \right] = - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)\left[ {\left( {A_t\left( {\varvec{\Theta}} \right)diag\left( {{{\dot k}_p}} \right)} \right) \odot {A_r}\left( {\varvec{\Theta}} \right)} \right]$$
(52)
$${{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\bf{r}}_p^T}} = A_t\left( {\varvec{\Theta}} \right) \odot {{\partial {A_r}\left( {\varvec{\Theta}} \right)} \over {\partial {\bf{r}}_p^T}} = \left[ {a_t\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right) \otimes {{\partial {a_r}\left( {{{\varvec{\Upsilon}}_1};{\varvec{\Theta}} } \right)} \over {\partial {\bf{r}}_p^T}}, \ldots ,a_t\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right) \otimes {{\partial {a_r}\left( {{{\varvec{\Upsilon}}_Q};{\varvec{\Theta}} } \right)} \over {\partial {\bf{r}}_p^T}}} \right] = - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)\left[ {A_t\left( {\varvec{\Theta}} \right) \odot \left( {{A_r}\left( {\varvec{\Theta}} \right)diag\left( {{{\dot k}_p}} \right)} \right)} \right]$$
(53)
$${\dot k_x} = {\left[ {\cos {\varphi_1}\cos {\theta_1}, \ldots ,\cos {\varphi_Q}\cos {\theta_Q}} \right]^T}$$
(54a)
$${\dot k_y} = {\left[ {\cos {\varphi_1}\sin {\theta_1}, \ldots ,\cos {\varphi_Q}\sin {\theta_Q}} \right]^T}$$
(54b)
$${\dot k_z} = {\left[ {\sin {\varphi_1}, \ldots ,\sin {\varphi_Q}} \right]^T}$$
(54c)

Finally, It is obvious that

$${W_{{\text{Location}}}} = \left[ \begin{array}{c} { - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)\left[ {\left( {A_t\left( {\varvec{\Theta}} \right)diag\left( {{{\dot k}_x}} \right)} \right) \odot {A_r}\left( {\varvec{\Theta}} \right)} \right]} \\ { - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)\left[ {\left( {A_t\left( {\varvec{\Theta}} \right)diag\left( {{{\dot k}_y}} \right)} \right) \odot {A_r}\left( {\varvec{\Theta}} \right)} \right]} \\ { - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)\left[ {\left( {A_t\left( {\varvec{\Theta}} \right)diag\left( {{{\dot k}_z}} \right)} \right) \odot {A_r}\left( {\varvec{\Theta}} \right)} \right]} \\ { - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)\left[ {A_t\left( {\varvec{\Theta}} \right) \odot \left( {{A_r}\left( {\varvec{\Theta}} \right)diag\left( {{{\dot k}_x}} \right)} \right)} \right]} \\ { - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)\left[ {A_t\left( {\varvec{\Theta}} \right) \odot \left( {{A_r}\left( {\varvec{\Theta}} \right)diag\left( {{{\dot k}_y}} \right)} \right)} \right]} \\ { - j\left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right)\left[ {A_t\left( {\varvec{\Theta}} \right) \odot \left( {{A_r}\left( {\varvec{\Theta}} \right)diag\left( {{{\dot k}_z}} \right)} \right)} \right]} \end{array} \right]$$
(55)

What’s more, assume all the antennas and the targets on one planar. By comparing the norms of \({{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\varvec{\Theta}} }}\) for the location derivatives and the phase derivatives, it is straightforward to show that in this case

$${\left\| {{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\varvec{\Theta}} }}} \right\|_{{\varvec{\Theta}} =location}} = {{2\pi } \over \lambda }{\left\| {{{\partial A\left( {\varvec{\Theta}} \right)} \over {\partial {\varvec{\Theta}} }}} \right\|_{{\varvec{\Theta}} =phase}}$$
(56)

Therefore, through simple calculation, we can get finally that the sensitivity parameter \(\delta _{{MUSIC}}\) for location errors is \({{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }\) times the sensitivity parameter for phase errors. Similarly, it can be shown that the failure threshold \({\delta_{fail}}\) for location errors is \({\lambda \mathord{\left/ {\vphantom {\lambda {2\pi }}} \right. \kern-0pt} {2\pi }}\) times the failure threshold for phase errors. In mathematical notation

$${\delta_{MUSIC{\text{-}}location}} = \left( {{{2\pi } \mathord{\left/ {\vphantom {{2\pi } \lambda }} \right. \kern-0pt} \lambda }} \right){\delta_{MUSIC{\text{-}}phase}}$$
(57a)
$${\delta_{fail{\text{-}}location}} = \left( {{\lambda \mathord{\left/ {\vphantom {\lambda {2\pi }}} \right. \kern-0pt} {2\pi }}} \right){\delta_{fail{\text{-}}phase}}$$
(57b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Cui, C., Yu, J. et al. Analysis on Direction Finding Sensitivity of MIMO Radar with System Errors. Wireless Pers Commun 87, 193–213 (2016). https://doi.org/10.1007/s11277-015-3038-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3038-2

Keywords

Navigation