Skip to main content

Advertisement

Log in

Analysis of Spectrum Access Strategy with Multiple Cross-Layer Considerations in Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the multi-channel cognitive radio network, we build an M/M/1/K packet delay queueing model integrating multiple cross-layer considerations for secondary users. To minimize the total average packet delay, the optimal probability vector for spectrum access is determined by genetic algorithm. Furthermore, the total average packet loss rate is derived with another consideration that the limited tolerable retransmission attempt for ARQ. Numerical result proves that our proposed spectrum access strategy outperforms the strategies of random, equal probability and inverse proportion. Finally, under the proposed spectrum access strategy, the influences of related cross-layer parameters on average packet delay and packet loss rate are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Federal Communications Commission, Spectrum policy task force, ET Docket no. 02-135 (2002).

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–220.

    Article  Google Scholar 

  3. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50, 2127–2159.

    Article  MATH  Google Scholar 

  4. Khoshkholgh, M. G., Navaie, K., & Yanikomeroglu, H. (2010). Access strategies for spectrum sharing in fading environment: Overlay, underlay, and mixed. IEEE Transactions on Mobile Computing, 9, 1780–1793.

    Article  Google Scholar 

  5. Song, M., Xin, C., Zhao, Y., & Cheng, X. (2012). Dynamic spectrum access: From cognitive radio to network radio. IEEE Wireless Communications, 19, 23–29.

    Article  Google Scholar 

  6. Zhao, Q., & Swami, A. (2007). A decision-theoretic framework for opportunistic spectrum access. IEEE Wireless Communications, 14, 14–20.

    Article  Google Scholar 

  7. Zhao, Q., Tong, L., Swami, A., & Chen, Y. (2007). Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 25, 589–600.

    Article  Google Scholar 

  8. Gambini, J., Simeone, O., Bar-Ness, Y., Spagnolini, U., & Yu, T. (2008). Packet-wise vertical handover for unlicensed multi-standard spectrum access with cognitive radios. IEEE Wireless Communications, 7, 5172–5176.

    Article  Google Scholar 

  9. Rashid, M., Hossain, M., Hossain, E., & Bhargava, V. (2009). Opportunistic spectrum scheduling for multiuser cognitive radio: A queueing analysis. IEEE Wireless Communications, 8, 5259–5269.

    Article  Google Scholar 

  10. Wang, L. C., Wang, C. W., & Feng, K. T. (2011). A queueing-theoretical framework for QoS-enhanced spectrum management in cognitive radio networks. IEEE Wireless Communications, 18, 18–26.

    Article  Google Scholar 

  11. Wang, J., Huang, A., Cai, L., & Wang, W. (2013). On the queue dynamics of multi-user multi-channel cognitive radio networks. IEEE Transactions on Vehicular Technology, 62, 1314–1328.

    Article  Google Scholar 

  12. Shiang, H. P., & van der Schaar, M. (2008). Queuing-based dynamic channel selection for heterogeneous multimedia applications over cognitive radio networks. IEEE Transactions on Multimedia, 10, 896–909.

    Article  Google Scholar 

  13. Hu, J., Yang, L.-L., & Hanzo, L. (2013). Maximum average service rate and optimal queue scheduling of delay-constrained hybrid cognitive radio in nakagami fading channels. IEEE Transactions on Vehicular Technology, 62, 2220–2229.

    Article  Google Scholar 

  14. Li, X., Wang, J., Li, H., & Li, S. (2012). Delay performance analysis and access strategy design for a multichannel cognitive radio network. Chinese Science Bulletin, 57, 3705–3712.

    Article  Google Scholar 

  15. Zhang, Y. (2008). Dynamic spectrum access in cognitive radio wireless networks. In Proceedings. 2008 IEEE international conference on communications, pp. 4927–4932.

  16. Jung, E., & Liu, X. (2012). Opportunistic spectrum access in multiple-primary-user environments under the packet collision constraint. IEEE/ACM Transactions on Networking, 20, 501–514.

    Article  Google Scholar 

  17. Liu, X., Krishnamachari, B., & Liu, H. (2010). Channel selection in multi-channel opportunistic spectrum access networks with perfect sensing. In 2010 IEEE symposium on new Frontiers in dynamic spectrum, pp. 1–8.

  18. Cheng, H. T., Shan, H., & Zhuang, W. (2011). Stopping rule-driven channel access in multi-channel cognitive radio networks. In 2011 IEEE international conference on communications, pp. 1–6.

  19. Shetty, S., Agbedanu, K., & Ramachandran, R. (2011). Opportunistic spectrum access in multi-user multi-channel cognitive radio networks. In 2011 19th European signal processing conference, pp. 1229–1233.

  20. Zhang, X., & Su, H. (2011). CREAM-MAC: Cognitive radio-enabled multi-channel MAC protocol over dynamic spectrum access networks. IEEE Journal of Selected Topics in Signal Processing, 5, 110–123.

    Article  Google Scholar 

  21. Cho, H., & Hwang, G. (2013). An optimized random channel access policy in cognitive radio networks under packet collision requirement for primary users. IEEE Wireless Communications, 12, 6382–6391.

    Article  Google Scholar 

  22. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  23. Bao, X., Martins, P., Song, T., & Shen, L. (2011). Stable throughput and delay performance in cognitive cooperative systems. IET Communications, 5, 190–198.

    Article  MathSciNet  Google Scholar 

  24. Bose, S. K. (2001). An introduction to queueing systems. Berlin: Springer.

    Google Scholar 

  25. Rao, R. R., & Ephremides, A. (1988). On the stability of interacting queues in a multiple-access system. IEEE Transactions on Information Theory, 34, 918–930.

    Article  MathSciNet  MATH  Google Scholar 

  26. Louis, S. J., & Rawlins, G. J. E. (1993). Syntactic analysis of convergence in genetic algorithms. In W. L. Darrell (Ed.), Foundations of genetic algorithms (Vol. 2, pp. 141–151). Amsterdam: Elsevier.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 61271207 and 61372104), Program Sponsored for Cientific Innovation Research of College Graduate in Jiangsu Province (No. CXZZ13-0100), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 12KJB510002) and Natural Science Foundation of Jiangsu Province (No. BK20130530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Appendix: Proof of Non-convexity of \(s({\mathbf{Q}})\)

Appendix: Proof of Non-convexity of \(s({\mathbf{Q}})\)

Since \(s({\mathbf{Q}})\) is twice differentiable and the definition domain of \(s({\mathbf{Q}})\) (dom s) is convex, \(s({\mathbf{Q}})\) is convex if and only if its Hessian \(\nabla ^2s({\mathbf{Q}})\) is positive semidefinite: for all \(q\in\) dom s. Here we will give the opposite side, that is, its Hessian is indefinite.

$$\begin{aligned}{}[\nabla ^2 s({\mathbf{Q}})]_{ij} = \left\{ {\begin{array}{ll} {\frac{{\partial ^2 s({\mathbf{Q}})}}{{(\partial q_i )^2 }}} &{} \quad i = j \\ 0 &{} \quad i \ne j \\ \end{array} } \right. , \end{aligned}$$
(19)

where \(\frac{{\partial ^2 s({\mathbf{Q}})}}{{(\partial q_i )^2 }} = g''(q_i )q_i + 2g'(q_i )\) is the eigenvalue of the Hessian matrix. If there are both positive and negative eigenvalues, the Hessian is indefinite. We can obtain that the first and second-order derivates of g(q) are divisions of two polynomials in q with positive and negative coefficients, respectively. And in form, the denominator has a higher power in q than numerator. Here we don’t display the derivates results, since its verbosity. We just take for example when \(K_s=1\) to prove that not for all \(q\in\) dom s, the eigenvalues are nonnegative.

For \(K_s=1\), it is derived that

$$\begin{aligned} \frac{{\partial ^2 s({\mathbf{Q}})}}{{(\partial q_i )^2 }} = \frac{{4a^6 q_i^5 - 8a^4 q_i^3 }}{{(a^2 q_i^2 - 2aq_i {\text { + }}1)^4 \mu _s }}. \end{aligned}$$
(20)

Then \(\frac{{\partial ^2 s({\mathbf{Q}})}}{{(\partial q_i )^2 }} \ge 0\) if and only if \(q_i^2\ge \frac{2}{a^2}\), that is, \(q_i\ge \frac{\sqrt{2}\mu _s^2}{{\mathbf{r}}^T {\mathbf{1}}[1 - (1 - \mu _s )^{D + 1} ]}\). Therefore, non-convexity of \(s({\mathbf{Q}})\) holds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Song, T., Hu, J. et al. Analysis of Spectrum Access Strategy with Multiple Cross-Layer Considerations in Cognitive Radio Networks. Wireless Pers Commun 87, 1383–1400 (2016). https://doi.org/10.1007/s11277-015-3067-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3067-x

Keywords

Navigation