Skip to main content
Log in

Distributed DOA Estimation for Arbitrary Topology Structure of Mobile Wireless Sensor Network Using Cognitive Radio

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In order to improve the frequency spectrum availability and evade insecurity frequency range, the cognitive radio is introduced in wireless sensor network (WSN), which constructs the cognitive wireless network (CWN). The dynamic spectrum access (DSA) is used in CWN as the spectrum access scheme. In this paper, sensor nodes of mobile wireless sensor network (MWSN) are deployed based on the prior information of the deployment environment. The idea of CWN is introduced in MWSN. A distributed direction-of-arrival (DOA) estimation algorithm is proposed. The clustering of nodes constructs a sub-NWSN which acts as the sensor array used for DOA estimation. The Fourier domain (FD) root multiple signal classification (root-MUSIC) algorithm is applied for DOA estimation of sub-MWSN with arbitrary topology structure. The weight values of sub-MWSNs can be formulated as a function of the number of nodes, snapshot number and battery capacity of nodes. The total cost spectrum function is achieved finally. The improved performance of distributed FD root-MUSIC algorithm is verified by comparing with the manifold separation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kulkarni, R. V., Förster, A., & Venayagamoorthy, G. K. (2011). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 13(1), 68–96.

    Article  Google Scholar 

  2. Wan, L., Han, G., Shu, L., Feng, N., Zhu, C., & Lloret, J. (2015). Distributed source localization algorithm using manifold separation technique for mobile wireless sensor networks based on cloud computing in battlefield surveillance system. IEEE ACCESS, 3, 1729–1739.

    Article  Google Scholar 

  3. Jabbar, S., Minhas Abid, A., Paul, A., & Rho, S. (2015). E-MCDA: Extended-multilayer cluster designing algorithm for network lifetime improvement of komogenous wireless sensor networks. International Journal of Distributed Sensor Networks, 2015, 21. doi:10.1155/2015/902581.

  4. Jabbar, S., Minhas Abid, A., Paul, A., & Rho, S. (2014). Multilayer cluster designing algorithm for lifetime improvement of wireless sensor networks. Journal of Supercomputing, 70(1), 104–132.

    Article  Google Scholar 

  5. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  6. Baggio, A., & Langendoen, K. (2008). Monte carlo localization for mobile wireless sensor networks. Ad Hoc Networks, 6(5), 718–733.

    Article  Google Scholar 

  7. Amundson, I., & Koutsoukos, X. D. (2009). A survey on localization for mobile wireless sensor networks. Mobile entity localization and tracking in GPS-less environnments, 5801, 235–254. doi: 10.1007/978-3-642-04385-7_16.

    Article  Google Scholar 

  8. Ghasemi, A., & Sousa, E. S. (2008). Interference aggregation in spectrum-sensing cognitive wireless networks. Journal of Selected Topics in Signal Processing, 2(1), 41–56.

    Article  Google Scholar 

  9. Friedlander, B., & Zeira, A. (1996). Eigenstructure-based algorithms for direction finding with time-varying arrays. IEEE Transactions on Aerospace and Electronic Systems, 32(2), 689–701.

    Article  Google Scholar 

  10. Sheinvald, J., Wax, M., & Weiss, A. J. (1998). Localization of multiple sources with moving arrays. IEEE Transactions on Signal Processing, 46(10), 2736–2743.

    Article  Google Scholar 

  11. Panigrahia, T., Pandab, G., Mulgrewc, B., & Majhid, B. (2013). Distributed doa estimation using clustering of sensor nodes and diffusion pso algorithm. Swarm and Evolutionary Computation, 9, 47–57.

    Article  Google Scholar 

  12. Wan, L., Han, G., Jiang, J., & Shu, L. (1986). Distributed DOA estimation based on manifold separation technique in mobile wireless sensor networks. In Proceedings of the Second Workshop on Mobile Sensing, Computing and Communication (MSCC) (pp. 1–6).

  13. Wen, F., Wan, Q., Fan, R., & Wei, H. (2014). Improved MUSIC algorithm for multiple noncoherent subarrays. IEEE Signal Processing Letters, 21(5), 527–530.

    Article  Google Scholar 

  14. Erling, J. G., Roan, M. J., & Gramann, M. R. (2007). Performance bounds for multisource parameter estimation using a multiarray network. IEEE Transactions on Signal Processing, 55(10), 4791–4799.

    Article  MathSciNet  Google Scholar 

  15. Gershman, A. B., Rlzbsamen, M., & Pesavento, M. (2010). One-and two-dimensional direction-of-arrival estimation: An overview of search-free techniques. Signal Processing, 90(5), 1338–1349.

    Article  MATH  Google Scholar 

  16. Akyildiz, I. F., Lee, W., Vuran, M., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  17. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  18. Thomas, R., Friend, D., Dasilva, V., & Mackenzie, A. (2006). Cognitive networks: Adaptation and learning to achieve end-to-end performance objectives. IEEE Communications Magazine, 44(12), 51–57.

    Article  Google Scholar 

  19. Chen, T., Zhang, H., & Katz, M. D. (2009). Cloud networking formation in cogmesh environment.arXiv, page preprint arXiv:0904.2028

  20. Friedlander, B. (1993). The root-music algorithm for direction finding with interpolated arrays. Signal Processing, 30(1), 15–29.

    Article  MathSciNet  MATH  Google Scholar 

  21. Belloni, F., Richter, A., & Koivunen, V. (2007). DOA estimation via manifold separation for arbitrary array structures. IEEE Transactions on Signal Processing, 55(10), 4800–4810.

    Article  MathSciNet  Google Scholar 

  22. Han, G., Zhang, C., Shu, L., Sun, N., & Li, Q. (2013). A survey on deployment algorithms in underwater acoustic sensor networks. International Journal of Distributed Sensor Networks 2013, Article ID 314049.

  23. Wan, L., Han, G., Jiang, J., Rodrigues, J. J. P. C., Feng, N., & Zhu, T. (2015). DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems. IEEE Systems Journal. doi:10.1109/JSYST.2015.2445052.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Qing Lan Project, by the Natural Science Foundation of JiangSu Province of China, No. BK20140248, by the Fok Ying-Tong Education Foundation, China (Grant No. 142006), the Fundamental Research Funds for the Central Universities (Grant No. 2013KJ034 and No. 2100219043), by the National Science Foundation of China under Grant Nos. 61572172, 61472283 and 61307042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjie Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Han, G., Zhang, D. et al. Distributed DOA Estimation for Arbitrary Topology Structure of Mobile Wireless Sensor Network Using Cognitive Radio. Wireless Pers Commun 93, 431–445 (2017). https://doi.org/10.1007/s11277-016-3172-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3172-5

Keywords

Navigation