Skip to main content
Log in

Virtualization and Scheduling Methods for 5G Cognitive Radio Based Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The 5G technology is a revolutionary technology, which will offer an “unlimited wireless world interconnection” (Badoi et al. in Wirel Pers Commun 57(3):441–464 2011. doi:10.1007/s11277-010-0082-9; Prasad 2014) and a large type of services to a vastly number of users, while using a high performance terminal. These services will most probably be provided to the users as cloud based services, with different Quality of Services (QoS) characteristics. More exactly, based on the user subscription and on the required service, the user will be served with a given QoS. Each type of QoS services class will be assured by a 5G virtual network, having a one-to-one QoS class versus 5G virtual network correspondence. In this context, the virtualization and scheduling methods will play an important role regarding the ability to provide such services in 5G networks. In this paper we present the virtualization concept within 5G networks, while also describing the existing work conducted until now in wireless networks and Future Internet fields. Two virtualization methods are also presented in this paper, based on the spectrum sharing principle used in the Cognitive Radio networks (Badoi et al. in Wirel Pers Commun 57(3):441–464 2011. doi:10.1007/s11277-010-0082-9) and based on partition principle used in Future Internet (Nejbati et al. 2012). A combination of these two methods should offer a better granularity of 5G networks virtualization, with the price of an increased complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Badoi, C.-I., Prasad, N., Croitoru, V., & Prasad, R. (2011). 5G based Cognitive Radio. Wireless Personal Communications, 57(3), 441–464. doi:10.1007/s11277-010-0082-9.

    Article  Google Scholar 

  2. Prasad, R. (2014). 5G: 2020 and Beyond. In The River Publishers’ Series in Communications, September 2014, ISBN: 978-8793237131.

  3. Nejbati, R., Azodolmolky, S., & Simeonidou, D. (2012). Role of network virtualization in future Internet innovation. In 2012 17th European conference on networks and optical communications (NOC) (pp. 1–4). 20–22 June 2012. doi:10.1109/NOC.2012.6249915.

  4. Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communications (pp. 118–127). June 2014. doi:10.1109/MWC.2014.6845056.

  5. Li, Q., Niu, H., Papathanassiou, A., & Wu, G. (2014). Edge cloud and underlay networks: Empowering 5G cell-less wireless architecture. In Proceedings of European Wireless 2014, 20th European Wireless Conference, 14–16 May 2014, ISBN: 978-3-8007-3621-8.

  6. Ge, X., Cheng, H., Guizani, M., & Han, T. (2014). 5G wireless backhaul networks: Challenges and research advances. IEEE Network, 28(6), 6–11. doi:10.1109/MNET.2014.6963798.

    Article  Google Scholar 

  7. Rowell, C., Han S., Xu, Z., & Lin, I. C. (2014). Green RF technologies for 5G networks. In 2014 IEEE International Wireless Symposium (IWS) (pp. 1–4). doi:10.1109/IEEE-IWS.2014.6864188.

  8. Taori, R., & Sridharan, A. (2014). In-band, point to multi-point, mm-Wave backhaul for 5G networks. IEEE International Conference on Communications Workshops (ICC) (pp. 96–101). 10–14 June 2014. doi:10.1109/ICCW.2014.6881179.

  9. Karjalainen, J., Nekovee, M., Benn, H., Kim, W., Park, J., & Sungsoo, H. (2014). Challenges and opportunities of mm-wave communication in 5G networks. In 9th international conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 372–376). June 2–4, 2014 INSPEC Accession Number: 14447280.

  10. Bochechka, G., & Tikhvinskiy, V. (2014). Spectrum occupation and perspectives millimeter band utilization for 5G networks. In Proceedings of the 2014 ITU Kaleidoscope Academic Conference: Living in a converged worldImpossible without standards? (pp. 69–72). 3–5 June 2014. doi:10.1109/Kaleidoscope.2014.6858482.

  11. Watts, S., & Aliu, O. G. (2014). 5G resilient backhaul using integrated satellite networks. In 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC) (pp. 114–119). September 8–10, 2014, doi:10.1109/ASMS-SPSC.2014.6934532.

  12. Nomikos, N., Makris, P., Skoutas, D. N., Vouyioukas, D., & Skianis, C. (2014). Enabling wireless prosuming in 5G networks. In 2014 International Conference on Telecommunications and Multimedia (TEMU) (pp. 190–195). July 28–30, 2014. doi:10.1109/TEMU.2014.6917759.

  13. Huaning, N., Li, C., Papathanassiou, A., & Geng, W. (2014). RAN architecture options and performance for 5G network evolution. In IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (pp. 294–298). April 6–9, 2014. doi:10.1109/WCNCW.2014.6934902.

  14. Kaloxylos, A., Barmpounakis, S., Spapis, P., & Alonistioti, N. (2014). An efficient RAT selection mechanism for 5G cellular networks. In 2014 International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 942–947). August 4–8, 2014. doi:10.1109/IWCMC.2014.6906482.

  15. Gomez-Miguelez, I., Avdic, E., Marchetti, N., Macaluso, I., & Doyle, L. (2014). Cloud-RAN platform for LSA in 5G networks—Tradeoff within the infrastructure. In 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP) (pp. 522–525), May 21–23, 2014. doi:10.1109/ISCCSP.2014.6877927.

  16. Di Taranto, R., Muppirisetty, S., Raulefs, R., Slock, D., Svensson, T., & Wymeersch, H. (2014). Location-aware communications for 5G networks: How location information can improve scalability, latency, and robustness of 5G. IEEE Signal Processing Magazine, 31(6), 102–112. doi:10.1109/MSP.2014.2332611.

    Article  Google Scholar 

  17. Yaacoub, E., & Dawy, Z. (2014). On using relays with carrier aggregation for planning 5G networks supporting M2 M traffic. In 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 124–129). October 8–10. 2014. doi:10.1109/WiMOB.2014.6962160.

  18. Yilmaz, O. N. C., Li, Z., Valkealahti, K., Uusitalo, M. A., Moisio, M., Lunden, P., Wijting, C. (2014). Smart mobility management for D2D communications in 5G networks. In 2014 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (pp. 219–223). April 6–9, 2014. doi:10.1109/WCNCW.2014.6934889.

  19. Nomikos, N., Skoutas, D. N., & Makris, P. (2014). Relay selection in 5G networks. In 2014 international wireless communications and mobile computing conference (IWCMC) (pp. 821–826). August 4–8, 2014. doi:10.1109/IWCMC.2014.6906462.

  20. Khan, A., Kiess, W., Perez-Caparros, D., & Triay, J. (2013). Quality-of-service (QoS) for virtual networks in OpenFlow MPLS transport networks. In 2013 IEEE 2nd international conference on cloud networking (CloudNet) (pp. 10–17), November 11–13, 2013. doi:10.1109/CloudNet.2013.6710552.

  21. Roy, G. M., Saurabh, S. K., Upadhyay, N. M., Gupta, P. K. (2011). Creation of virtual node, virtual link and managing them in network virtualization. In 2011 world congress on information and communication technologies (WICT) (pp. 738–742). December 11–14, 2011. doi:10.1109/WICT.2011.6141338.

  22. Xiaodong, X., Huixin, Z., Xun, D., Yanzhao, H., Xiaofeng, T., & Ping, Z. (2014). SDN based next generation Mobile Network with Service Slicing and trials. Communications, China, 11(2), 65. doi:10.1109/CC.2014.6821738.

    Article  Google Scholar 

  23. Burakowski, W. (2012). Role of network virtualization in designing Future Internet. In 2012 XVth international telecommunications network strategy and planning symposium (NETWORKS) (pp. 1–3). October 15–18, 2012. doi:10.1109/NETWKS.2012.6381668.

  24. Leivadeas, A., Papagianni, C., & Papavassiliou, S. (2012). Socio-aware virtual network embedding. IEEE Network, 26(5), 35–43. doi:10.1109/MNET.2012.6308073.

    Article  Google Scholar 

  25. Duan, Q. (2011). Automatic network service discovery and selection in virtualization-based future Internet. In 2011 IEEE GLOBECOM Workshops (GC Wkshps) (pp. 1088–1093). December 5–9, 2011. doi:10.1109/GLOCOMW.2011.6162346.

  26. Jinzhou, C., Chunming, W, Ming, J., & Dong, Z. (2010). A review of future internet research programs and possible trends. In 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM) (pp. 1–4). September 23–25, 2010. doi:10.1109/WICOM.2010.5601269.

  27. Huang, J., Xu, C., Duan, Q., Ma, Y., & Muntean, G. (2012). Novel end-to-end quality of service provisioning algorithms for multimedia services in virtualization-based future internet. IEEE Transactions on Broadcasting, 58(4), 569–579. doi:10.1109/TBC.2012.2198970.

    Article  Google Scholar 

  28. Min, S., Kim, S., Lee, J., Kim, B., Hong, W., & Kong, J. (2012). Implementation of an OpenFlow network virtualization for multi-controller environment. In 14th international conference on advanced communication technology (ICACT) (pp. 589–592). February 19–22, 2012, ISSN: 1738-9445.

  29. Adami, D., Giordano, S., Pagano, M., & Zuliani, L. G. (2009). On leveraging future internet services through multidomain layer 1 virtualization. In 2009 IEEE GLOBECOM workshops (pp. 1–5), November 30, 2009–December 4, 2009. doi:10.1109/GLOCOMW.2009.5360739.

  30. Guimaraes, P. H. V., Ferraz, L. H. G., Torres, J. V., Mattos, D. M. F., Murillo, P, A. F., Andreoni L., et al. (2013). Experimenting content-centric networks in the future internet testbed environment. In 2013 IEEE International Conference on Communications Workshops (ICC) (pp. 1383–1387). June 9–13, 2013. doi: 10.1109/ICCW.2013.6649453.

  31. Min, S. H., Kim, B. C., & Lee, J. Y. (2011). NetFPGA-based scheduler implementation for resource virtualization of Future Internet testbed. In 2011 international conference on ICT convergence (ICTC) (pp. 597–602), September 28–30, 2011. doi:10.1109/ICTC.2011.6082692.

  32. Fischer, M., Kissmann, M., Grau, S., & Schaefer, G. (2011). On virtualization-based network support for peer-assisted live-streaming applications. In 2011 international conference on the network of the future (NOF) (pp. 25–30). November 28–30, 2011. doi:10.1109/NOF.2011.6126677.

  33. Chydzinski, A., Rawski, M., Wisniewski, P., Adamczyk, B., Olszewski, I., Szotkowski, P., et al. (2012). Virtualization devices for prototyping of future internet. In 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel & Distributed Computing (SNPD) (pp. 672–678). August 8–10, 2012. doi:10.1109/SNPD.2012.49.

  34. Yang, M., Li, Y., Zeng, L., Jin, D., & Su, L. (2011). Parallel selection algorithm for multiple applications in Network Virtualization. In 2011 third international conference on ubiquitous and future networks (ICUFN) (pp. 321–326). June 15–17, 2011. doi:10.1109/ICUFN.2011.5949184.

  35. Lopes Gomes, R. & Madeira, E. (2011). An automatic SLA negotiation protocol for a Future Internet. In 2011 IEEE Latin-American conference on communications (LATINCOM) (pp. 1–6). October 24–26, 2011. doi:10.1109/LatinCOM.2011.6107410.

  36. Dong, Z. (2012). Reconfigurable network simulation testbed based on network virtualization. In 2012 8th international conference on wireless communications, networking and mobile computing (WiCOM) (pp. 1–4). September 21–23, 2012. doi:10.1109/WiCOM.2012.6478637.

  37. Szegedi, P., et al. (2011). Enabling future internet research: The FEDERICA case. IEEE Communications Magazine, 49(7), 54–61. doi:10.1109/MCOM.2011.5936155.

    Article  Google Scholar 

  38. Yanzhou, Z., Chaoling, L., Lixin, L., & Wenjun, L. (2099). Improving the Scalability of PrivacyCAs. In Second international workshop on computer science and engineering, 2009, WCSE’09 (pp. 111–116). October 28–30, 2009. doi:10.1109/WCSE.2009.777.

  39. Natarajan, S., & Wolf, T. (2012). Security issues in network virtualization for the future Internet. In 2012 international conference on computing, networking and communications (ICNC) (pp. 537–543). January 30–February 2, 2012. doi:10.1109/ICCNC.2012.6167481.

  40. Zaki, Y., Zhao, L., Goerg, C., & Timm-Giel, A. (2010). LTE wireless virtualization and spectrum management. In 2010 third joint IFIP wireless and mobile networking conference (WMNC) (pp. 1–6). October 13–15, 2010. doi:10.1109/WMNC.2010.5678740.

  41. Rahman, M. M., Despins, C., & Affes, S. (2013). Analysis of CAPEX and OPEX benefits of wireless access virtualization. In 2013 IEEE international conference on communications workshops (ICC) (pp. 436–440). June 9–13, 2013. doi:10.1109/ICCW.2013.6649273.

  42. Grunenberger, Y., Tinnirello, I., Gallo, P., Goma, E., & Bianchi, G. (2012). Wireless card virtualization: From virtual NICs to virtual MAC machines. In Future network and mobile summit (FutureNetw) (pp. 1–10). July 4–6, 2012. ISBN: 978-1-4673-0320-0.

  43. Al-Hazmi, Y., & de Meer, H., (2011). Virtualization of 802.11 interfaces for Wireless Mesh Network. In 2011 eighth international conference on wireless on-demand network systems and services (WONS) (pp. 44–51), January 26–28, 2011. doi:10.1109/WONS.2011.5720199.

  44. Ahn, S. W., & Yoo, C. (2012). Multiple-streaming method for SVC video by virtualization of network interface in wireless environment. In 2012 18th IEEE International Conference on Networks (ICON) (pp. 360–363), December 12–14, 2012. doi:10.1109/ICON.2012.6506584.

  45. Ahn, S.-W., & Yoo, C. (2011). Network interface virtualization in wireless communication for multi-streaming service. In 2011 IEEE 15th international symposium on consumer electronics (ISCE) (pp. 67–70). June 14–17, 2011. doi:10.1109/ISCE.2011.5973785.

  46. Wang, J., Zhao, M., Zhou, S., & Yao, Y. (2012). Virtualization of wireless communication systems. Tsinghua Science and Technology, 6(1), 45–48.

    Google Scholar 

  47. Han, S. Y., Shin, B., & Lee, D. (2014). A fine-grain partial MAC virtualization to support cross layer design in wireless ad hoc networks. In 2014 IEEE 39th conference on local computer networks (LCN) (pp. 506–509). September 8–11, 2014. doi:10.1109/LCN.2014.6925828.

  48. Gao, X., Yu, H., Anand, V., & Sun, G., & Di, H. (2010). A new algorithm with coordinated node and link mapping for virtual network embedding based on LP relaxation. In 2010 Asia communications and photonics conference and exhibition (ACP) (pp. 152–153). December 8–12, 2010. doi:10.1109/ACP.2010.5682788.

  49. Rahman, M. R., & Boutaba, R. (2013). SVNE: survivable virtual network embedding algorithms for network virtualization. IEEE Transactions on Network and Service Management, 10(2), 105–118. doi:10.1109/TNSM.2013.013013.110202.

    Article  Google Scholar 

  50. Kalil, M., Shami, A., & Ye, Y. (2014). Wireless resources virtualization in LTE systems. In 2014 IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 363–368). April 27, 2014–May 2, 2014. doi:10.1109/INFCOMW.2014.6849259.

  51. van de Belt, J., Ahmadi, H., & Doyle, L. E. (2014). A dynamic embedding algorithm for wireless network virtualization. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–6). September 14–17, 2014. doi:10.1109/VTCFall.2014.6965811.

  52. Tao, H., Jiang, L., Jianya, C., & Yunjie, L. (2014). A topology-cognitive algorithm framework for virtual network embedding problem. China Communications, 11(4), 73–84. doi:10.1109/CC.2014.6827570.

    Article  Google Scholar 

  53. Yang, M., Li, Y., Zeng, L., Jin, D., & Su, L. (2012). Karnaugh-map like online embedding algorithm of wireless virtualization. In 2012 15th international symposium on wireless personal multimedia communications (WPMC) (pp. 594–598). September 24–27, 2012. ISSN: 1347-6890.

  54. Aljabari, G., & Eren, E. (2011). Virtualization of wireless LAN infrastructures. In 2011 IEEE 6th international conference on intelligent data acquisition and advanced computing systems (IDAACS) (vol. 2, pp. 837–841). September 15–17, 2011. doi:10.1109/IDAACS.2011.6072889.

  55. Nakauchi, K., Shoji, Y., & Nishinaga, N. (2012). Airtime-based resource control in wireless LANs for wireless network virtualization. In 2012 fourth international conference on ubiquitous and future networks (ICUFN) (pp. 166–169). 4–6 July 2012. doi: 10.1109/ICUFN.2012.6261686.

  56. Zhang, X., Li, Y., Jin, D., Su, L., Zeng, L., & Hui, P. (2012). Efficient resource allocation for wireless virtualization using time-space division. In 2012 8th international wireless communications and mobile computing conference (IWCMC) pp. 59–64. August 27–31, 2012. doi: 10.1109/IWCMC.2012.6314178.

  57. Singhal, S., Hadjichristofi, G., Seskar, I., & Raychaudhri, D. (2008). Evaluation of UML Based Wireless Network Virtualization. Next Generation Internet Networks, 28–30, 223–230. doi:10.1109/NGI.2008.37.

    Google Scholar 

  58. Yang, M, Li, Y.; Jin, D., Yuan, J., Su, L. Zeng, L. (2013). Opportunistic spectrum sharing based resource allocation for wireless virtualization. In 2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS) pp. 51–58. July 3–5, 2013. doi: 10.1109/IMIS.2013.18.

  59. Yang, M., Li, Y., Liu, J., Jin, D., Yuan, J., Zeng, L. (2014). Opportunistic spectrum sharing for wireless virtualization. In 2014 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1803–1808). April 6–9, 2014. doi:10.1109/WCNC.2014.6952523.

  60. Kamel, M. I., Le, L. B., & Girard, A. (2014). LTE wireless network virtualization: Dynamic slicing via flexible scheduling. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–5). September 14–17, (2014). doi:10.1109/VTCFall.2014.6966044.

  61. Fu, F., & Kozat, U. C. (2013). Stochastic game for wireless network virtualization. IEEE/ACM Transactions on Networking 21(1), February 12, 2013. doi: 10.1109/TNET.2012.2190419.

  62. Doulat, A., Al Aziz, A. A. A., Al-Ayyoub, M., Jararweh, Y., Bany Salameh, H. A., & Khreishah, A. A. (2014). Software defined framework for multi-cell Cognitive Radio Networks”, 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 513–518). October 8–10, 2014. doi:10.1109/WiMOB.2014.6962219.

  63. Wei, Y., Wang, J., Wang, C., & Wang, C. (2010). Bandwidth allocation in virtual network based on traffic prediction. In 2010 International Conference on Computer Design and Applications (ICCDA) (vol. 5, pp. V5-304–V5-307). doi:10.1109/ICCDA.2010.5541108.

  64. Meng, X., Shou, G., Hu, Y., & Guo, Z. (2014). Efficient load balancing multipath algorithm for fiber-wireless network virtualization. In 2014 international conference on information and communications technologies (ICT 2014) (pp. 1–6). May 15–17, 2014. doi:10.1049/cp.2014.0579.

  65. Chen, D., Qiu, X., Qu, Z., Zhang, S., & Li, W. (2011). Algorithm for virtual nodes reconfiguration on network virtualization. In 2011 International Conference on Advanced Intelligence and Awareness Internet (AIAI 2011) (pp. 333–337). October 28–30, 2011. doi:10.1049/cp.2011.1484.

  66. Perez, S., Cabero, J. M., & Miguel, E. (2009). Virtualization of the wireless medium: A simulation-based study. In IEEE 69th vehicular technology conference (pp. 1–5), April 26–29, 2009. doi:10.1109/VETECS.2009.5073908.

  67. He, S., Shou, G., Hu, Y., & Guo, Z. (2013). Performance of multipath in fiber-wireless (FiWi) access network with network virtualization. Military Communications Conference (pp. 928–932). November 18–20, 2013. doi:10.1109/MILCOM.2013.161.

  68. Dai, Q., Zou, J., Shou, G., Hu, Y., & Guo, Z. (2013). Network virtualization based seamless networking scheme for fiber-wireless (FiWi) networks. China Communications, 11(5), 1–16. doi:10.1109/CC.2014.6880456.

    Article  Google Scholar 

  69. Dely, P., Kassler, A., & Bayer, N. (2011). OpenFlow for wireless mesh networks. In 2011 proceedings of 20th international conference on computer communications and networks (ICCCN) (pp. 1–6). July 31 2011–Aug. 4 2011. doi:10.1109/ICCCN.2011.6006100.

  70. RFC 7149—Software-Defined Networking: A Perspective from within a Service Provider Environment, March 2014, ISSN: 2070-172, https://tools.ietf.org/html/rfc7149.

  71. Ito, M., Nakauchi, K., Shoji, Y., Nishinaga, N., & Kitatsuji, Y. (2014). Service-specific network virtualization to reduce signaling processing loads in EPC/IMS. In IEEE Access (vol. 2, pp. 1076–1084). 03 October 2014. doi:10.1109/ACCESS.2014.2359059.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia-Ionela Badoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badoi, CI., Prasad, N. & Prasad, R. Virtualization and Scheduling Methods for 5G Cognitive Radio Based Wireless Networks. Wireless Pers Commun 89, 599–619 (2016). https://doi.org/10.1007/s11277-016-3295-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3295-8

Keywords

Navigation