Skip to main content
Log in

Practical Signcryption for Secure Communication of Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Secure communication is an important task for wireless sensor networks (WSNs). Signcryption is a good choice to guarantee the security of resource-constrained WSNs since it simultaneously achieves confidentiality, authentication, integrity and non-repudiation at a low cost. In this paper, we propose a heterogeneous signcryption scheme for secure communication from the WSNs to an Internet server. In our scheme, the WSNs belong to the certificateless cryptosystem (CLC) and the server belongs to the public key infrastructure (PKI). The CLC has neither key escrow problem nor public key certificates and is very suitable for the WSNs. The PKI is also suitable for the server since the PKI technique has been widely adopted in the Internet security. We prove that our scheme has the existential unforgeability against adaptive chosen message attack under q-strong Diffie–Hellman and modified inverse computational Diffie–Hellman problems and indistinguishability against adaptive chosen ciphertext attack under bilinear Diffie–Hellman inversion problem in the random oracle model. As compared with the existing three certificateless signcryption schemes (i.e., YL, BF and WC), our scheme respectively costs a 28.4, 58.3, and 68.2 % less in computational time and a 26.9, 56.6, and 67.3 % saving in energy consumption (the length of transmitted message is 100 bits).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li, F., Zhong, D., & Takagi, T. (2012). Practical identity-based signature for wireless sensor networks. IEEE Wireless Communications Letters, 1(6), 637–640.

    Article  Google Scholar 

  2. Wang, C., Jiang, C., Liu, Y., Li, X. Y., & Tang, S. (2014). Aggregation capacity of wireless sensor networks: Extended network case. IEEE Transactions on Computers, 63(6), 1351–1364.

    Article  MathSciNet  Google Scholar 

  3. Zheng, Y. (1997). Digital signcryption or how to achieve cost (signature & encryption) ≪ cost (signature) + cost(encryption). In Advances in cryptology-CRYPTO’97, LNCS 1294 (pp. 165–179). Springer.

  4. Kim, I. T., & Hwang, S. O. (2011). An efficient identity-based broadcast signcryption scheme for wireless sensor networks. In 6th International symposium on wireless and pervasive computing-ISWPC 2011 (pp. 1–6). Hong Kong.

  5. Babamir, F. S., & Eslami, Z. (2012). Data security in unattended wireless sensor networks through aggregate signcryption. KSII Transactions on Internet and Information Systems, 6(11), 2940–2955.

    Google Scholar 

  6. Babamir, F. S., & Norouzi, A. (2014). Achieving key privacy and invisibility for unattendedwireless sensor networks in healthcare. The Computer Journal, 57(4), 624–635.

    Article  Google Scholar 

  7. Li, F., & Xiong, P. (2013). Practical secure communication for integrating wireless sensor networks into the Internet of things. IEEE Sensors Journal, 13(10), 3677–3684.

    Article  Google Scholar 

  8. Senthil kumaran, U., & Ilango, P. (2015). Secure authentication and integrity techniques for randomized secured routing in WSN. Wireless Networks, 21(2), 443–451.

    Article  Google Scholar 

  9. Boneh, D., & Franklin, M. (2003). Identity-based encryption from the weil pairing. SIAM Journal on Computing, 32(3), 586–615.

    Article  MathSciNet  MATH  Google Scholar 

  10. Yin, A., & Liang, H. (2015). Certificateless hybrid signcryption scheme for secure communication ofwireless sensor networks. Wireless Personal Communications, 80(3), 1049–1062.

    Article  Google Scholar 

  11. Al-Riyami, S.S., & Paterson, K.G. (2003). Certificateless public key cryptography. In Advances in cryptology-ASIACRYPT 2003, LNCS 2894 (pp. 452–474). Springer.

  12. An, J. H., Dodis, Y., & Rabin, T. (2002). On the security of joint signature and encryption. In Advances in cryptology-EUROCRYPT 2002, LNCS 2332 (pp. 83–107). Springer.

  13. Malone-Lee, J., & Mao, W. (2003). Two birds one stone: Signcryption using RSA. In Topics in cryptology-CT-RSA 2003, LNCS 2612 (pp. 211–225). Springer.

  14. Boyen, X. (2003). Multipurpose identity-based signcryption: A swiss army knife for identity-based cryptography. In Advances in cryptology-CRYPTO 2003, LNCS 2729 (pp. 383–399). Springer.

  15. Chen, L., & Malone-Lee, J. (2005). Improved identity-based signcryption. In Public key cryptography-PKC 2005, LNCS 3386 (pp. 362–379). Springer.

  16. Barreto, P. S. L. M., Libert, B., McCullagh, N., & Quisquater, J. J. (2005). Efficient and provably-secure identity-based signatures and signcryption from bilinear maps. In Advances in cryptology-ASIACRYPT 2005, LNCS 3788 (pp. 515–532). Springer.

  17. Jo, H. J., Paik, J. H., & Lee, D. H. (2014). Efficient privacy-preserving authentication in wireless mobile networks. IEEE Transactions on Mobile Computing, 13(7), 1469–1481.

    Article  Google Scholar 

  18. Barbosa, M., & Farshim, P. (2008). Certificateless signcryption. In ACM symposium on information, computer and communications security-ASIACCS 2008 (pp. 369–372). Tokyo, Japan.

  19. Wu, C., & Chen, Z. (2008). A new efficient certificateless signcryption scheme. In International symposium on information science and engineering-ISISE-2008 (pp. 661–664). Shanghai, China.

  20. Sun, Y., & Li, H. (2010). efficient signcryption between TPKC and IDPKC and its multi-receiver construction. Science China Information Sciences, 53(3), 557–566.

    Article  MathSciNet  Google Scholar 

  21. Huang, Q., Wong, D. S., & Yang, G. (2011). Heterogeneous signcryption with key privacy. The Computer Journal, 54(4), 525–536.

    Article  Google Scholar 

  22. Li, F., Zhang, H., & Takagi, T. (2013). Efficient signcryption for heterogeneous systems. IEEE Systems Journal, 7(3), 420–429.

    Article  Google Scholar 

  23. Li, F., Zheng, Z., & Jin, C. (2016). Secure and efficient data transmission in the Internet of Things. Telecommunication Systems, 62(1), 111–122.

    Article  Google Scholar 

  24. Roman, R., & Lopez, J. (2009). Integrating wireless sensor networks and the Internet: A security analysis. Internet Research, 19(2), 246–259.

    Article  Google Scholar 

  25. Dutta, R., Barua, R., & Sarkar, P. (2004). Pairing-based cryptographic protocols : A survey. Cryptology ePrint Archive, Report 2004/064.

  26. Choi, K. Y., Park, J. H., Hwang, J. Y., & Lee, D. H. (2007). Efficient certificateless signature schemes . In Applied cryptography and network security-ACNS 2007, LNCS 4521 (pp. 443–458). Springer.

  27. Daemen, J., & Rijmen, V. (2002). The design of Rijndael: AES-the advanced encryption standard. Berlin: Springer.

    Book  MATH  Google Scholar 

  28. Pointcheval, D., & Stern, J. (2000). Security arguments for digital signatures and blind signatures. Journal of Cryptology, 13(3), 361–396.

    Article  MATH  Google Scholar 

  29. Boneh, D., & Boyen, X. (2004). Short signatures without random oracles. In Advances in cryptology-EUROCRYPT 2004, LNCS 3027 (pp. 56–73). Springer.

  30. Cha, J. C., & Cheon, J. H. (2003). An identity-based signature from gap Diffie–Hellman groups. In Public key cryptography-PKC 2003, LNCS 2567 (pp. 18–30). Springer.

  31. Shim, K. A., Lee, Y. R., & Park, C. M. (2013). EIBAS: An efficient identity-based broadcast authentication scheme in wireless sensor networks. Ad Hoc Networks, 11(1), 182–189.

    Article  Google Scholar 

  32. Gura, N., Patel, A., Wander, A., Eberle, H., & Shantz, S. C. (2004). Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In Cryptographic hardware and embedded systems-CHES 2004, LNCS 3156 (pp. 119–132). Springer.

  33. Cao, X., Kou, W., Dang, L., & Zhao, B. (2008). IMBAS: Identity-based multi-user broadcast authentication in wireless sensor networks. Computer Communications, 31(4), 659–667.

    Article  Google Scholar 

  34. Shim, K. A. (2014). \({{\rm S}}^{{\rm 2DRP}}\): Secure implementations of distributed reprogramming protocol for wireless sensor networks. Ad Hoc Networks, 19, 1–8.

    Article  Google Scholar 

  35. Ma, C., Xue, K., & Hong, P. (2014). Distributed access control with adaptive privacy preserving property for wireless sensor networks. Security and Communication Networks, 7(4), 759–773.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61073176, 61272525, 61302161 and 61462048) and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2013J069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fagen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Han, Y. & Jin, C. Practical Signcryption for Secure Communication of Wireless Sensor Networks. Wireless Pers Commun 89, 1391–1412 (2016). https://doi.org/10.1007/s11277-016-3327-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3327-4

Keywords

Navigation