Skip to main content

Advertisement

Log in

Evolutionary Clustering Algorithm Using Criterion-Knowledge-Ranking for Multi-objective Optimization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

There are variety of methods available to solve multi-objective optimization problems, very few utilizes criterion linkage between data objects in the searching phase, to improve final result. This article proposes an evolutionary clustering algorithm for multi-objective optimization. This paper aims to identify more relevant features based on criterion knowledge from the given data sets and also adopts neighborhood learning to improve the diversity and efficacy of the algorithm. This research is an extension of the previous work named neighborhood learning using k-means genetic algorithm (FS-NLMOGA) for multi-objective optimization which maximizes the compactness of the cluster and accuracy of the solution through constrained feature selection. The proposed objective finds the closest feature subset from the selected features of the data sets that also minimizes the cost while maintains the quality of the solution. The resultant cluster were analyzed and validated using cluster validity indexes. The proposed algorithm is tested with several UCI real-life data sets. The experimental results substantiates that the algorithm is efficient and robust .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Montano, A. A., Cello, C. A. C., & Mezura-Montes, E. (2012). Multiobjective evolutionary algorithms in aeronautical and aerospace engineering. IEEE Transactions on Evolutionary Computation, 16(5), 662–694.

    Article  Google Scholar 

  2. Das, S., Maity, S., Qu, B.-Y., & Suganthan, P. N. (2011). Real-parameters evolutionary multimodal optimization: A survey of the state-of-the-art. Swarm and Evolutionary Computation, 1(2), 71–88.

    Article  Google Scholar 

  3. Maulik, U., Bandyopadhyay, S., & Mukhopadhyay, A. (2011). Multiobjective genetic algorithms for clustering-applications in data mining and bioinformatics. Berlin: Springer.

    Book  MATH  Google Scholar 

  4. Cheshmehgaz, H. R., Haron, H., & Sharifi, A. (2013). The review of multiple evolutionary searches and multi-objective evolutionary algorithms. Artificial Intelligence, 43(3), 311–343. doi:10.1007/s10462-012-9378-3.

    Article  Google Scholar 

  5. Nandaa, S. J., & Pandab, G. (2014). A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm and Evolutionary Computation, 16, 1–18.

    Article  Google Scholar 

  6. Schutze, O., Laumanns, M., Collo, C. A. C., & Talbi, E. G. (2010). Compting gap free pareto front approximations with stochastic search algorithms. Evolutionary Computation, 18(1), 65–96.

    Article  Google Scholar 

  7. Das, N., Sarkar, R., Basu, S., Kundu, M., Nasipuri, M., & Basu, D. K. (2012). A genetic algorithm based region sampling for sampling for selection of local features in handwritten digit recognition applications. Applied Soft Computing, 12(5), 1592–1606.

    Article  Google Scholar 

  8. Islam, S. M., Das, S., Ghosh, S., Roy, S., & Suganthan, P. N. (2012). An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 12(2), 282–500.

    Google Scholar 

  9. Chatterjee, S., & Mukhopadhyay, A. (2013). Clustering ensemble: A multiobjective genetic algorithm based approach. Procedia Technology, 10, 443–449.

    Article  Google Scholar 

  10. Kirkland, O., Rayard-Smith, V. J., & de la Iglesia, B. (2011). A novel multi-objective genetic algorithm for clustering (pp. 317–326). Berlin: Springer.

    Google Scholar 

  11. Mokryani, G., Siano, P., & Piccolo, A. (2013). Optimal allocation of wind turbines in microgrids by using genetic algorithm. Journal of Ambient Intelligence and Humanized Computing. doi:10.1007/s12652-012-0163-6.

    Google Scholar 

  12. Anusha, M., & Sathiaseelan, J. G. R. (2014). An enhanced K-means genetic algorithm for optimal clustering. In 2014 IEEE ICCIC (pp. 550–584).

  13. Liu, L., & Mu, H. (2012). An oriented spanning tree based genetic algorithm for multi-criteria shortest path problems. Applied Soft Computing, 12, 506–512.

    Article  Google Scholar 

  14. Hajjar, C., & Harndan, H. (2013). Interval data clustering using self organizing maps based on adaptive distance. Neural Network, 11(1), 124–132.

    Article  MATH  Google Scholar 

  15. Bermejo, P., de la Ossa, L., Gamez, J. A., & Puerta, J. M. (2012). Fast wrapper feature subset selection in high-dimensional datasets by means of filter re-ranking. Knowledge-Based Systems, 1(25), 35–44.

    Article  Google Scholar 

  16. Kumari, A., Srinivas, K., & Gupta, M. (2013). Software module clustering using a hyper-heusristic based multi-objective genetic algorithm. In Advance computing conferecne (IAAC), IEEE International Conference (pp. 813–818).

  17. Ferrira, A. J., Figueiredo, M. A. T., & Zhou, Z. H. (2012). Efficient feature selection filters for high-dimensional data. Pattern Recognition Letters, 33(13), 1794–1804.

    Article  Google Scholar 

  18. Hsu, H. H., Hsieh, C. W., & Lu, M. D. (2011). Hybrid feature selection by combining filters and wrappers. Expert Systems with Applications, 38(7), 8144–8150.

    Article  Google Scholar 

  19. Ginnakoglou, K. C., & Kampolis, I. C. (2010). Multilevel optimization algorithms based on metamodel and fitness inheritance-assisted evolutionary algorithms. Computational intelligence in expensive optimization problems (pp. 61–84). Berlin: Springer.

    Google Scholar 

  20. Deb, K. (2014). Multi-objective optimization. In E. K. Burke & G. Kendall (Eds.), Search methodologies (pp. 403–449). Berlin: Springer.

    Chapter  Google Scholar 

  21. Anusha, M., & Sathiaseelan, J. G. R. (2015). An improved K-means genetic algorithm for multi-objective optimization. International Journal of Applied Engineering Research, Special Issue, 10(1), 228–231.

    Google Scholar 

  22. Antonio, L., & Coello Coello, C. (2013). Use of cooperative coevolution for solving large scale multi-objective optimization problems. In IEEE Congress on Evolutionary Computation (pp. 2758–2765). doi:10.1109/CEC.2013.6557903.

  23. Garcia-Piquer, A., Fornells, A., Bacardit, J., Orriols-Puig, A., & Golobardes, E. (2014). Large-sclae experimental of cluster representation for multi-objective evolutionary clustering. IEEE Transactions on Evolutionary Computation, 18(1), 36–55.

    Article  Google Scholar 

  24. Fieldsend, J. E., & Everson, R. M. (2015). The rolling tide evolutionary algorithm: A multiobjective optimizer for noisy optimization problems. IEEE Transactions on Evolutionary Computation, 19(1), 103–117.

    Article  Google Scholar 

  25. Li, M., Yang, S., & Liu, X. (2014). Shift-based estimation for pareto-based algorithms in many-objective optimization. IEEE Transactions on Evolutionary Computation, 18(3), 348–365.

    Article  Google Scholar 

  26. Lopez-James, A., & Coello, C. A. C. (2014). Including preferences into a many-objective engineering optimization problems. Information Sciences, 277, 1–20.

    Article  MathSciNet  Google Scholar 

  27. Gracia-Piquer, A., Fornells, A., Bacardit, J., Orriols, A., & Golobardes, E. (2014). Large-scale experimental evaluation of cluster representations for multiobjective evolutionary clustering. IEEE Transactions on Evolutionary Computation, 18(1), 36–53.

    Article  Google Scholar 

  28. Wang, J., Zhong, C., Zhou, Y., & Zhou, Y. (2014). Multiobjective optimization algorithm with objective-wise learning for continuous multiobjective problems. Journal of Ambient Intelligence and Humanized Computing, 6, 571–585.

    Article  Google Scholar 

  29. Wang, R., Fleming, P. J., & Purshouse, R. C. (2014). General framework for localised multi-objective evolutionary algorithms. Information Sciences, 258, 29–53.

    Article  MathSciNet  Google Scholar 

  30. Liu, H.-L., Gu, F., & Zhang, F. (2014). Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Transactions on Evolutionary Computation, 18, 450–455.

    Article  Google Scholar 

  31. Mukhopadhyay, A., & Bandyopadhyay, S. (2014). A survey of multiobjective evolutionary algorithms for data mining: Part-II. IEEE Transactions on Evolutionary Computation, 18(1), 20–35.

    Article  Google Scholar 

  32. Coello, C. A. C. (2015). Multi-objective evolutionary algorithms in real-world applications: Some recent results and current challenges. Berlin: Springer.

    Google Scholar 

  33. Li, K., Fialho, A., Kwong, S., & Zhang, Q. (2014). Adaptive operator selection with bandits for a multi-objective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 18(1), 114–130.

    Article  Google Scholar 

  34. Carreno Jara, E. (2014). Multi-objective optimization by using evolutionary algorithms: The ρ-optimality criteria. IEEE Transactions on Evolutionary Computation, 18(2), 167–179.

    Article  Google Scholar 

  35. Deb, K., & Jain, H. (2014). An evoutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part-I solving with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577–601.

    Article  Google Scholar 

  36. Deb, K., & Jain, H. (2014). An evoutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part-II: handing constraints and extending to an adaptive. IEEE Transactions on Evolutionary Computation, 18(4), 602–622.

    Article  Google Scholar 

  37. Peng, P., Addam, O., Elzohbi, M., Ozyer, S. T., Elhajj, A., Gao, S., et al. (2014). Reporting and analyzing alternative clustering solutions by employing multi-objective genetic algorithm and conducting experiments. Knowledge-Based Systems, 56, 108–122.

    Article  Google Scholar 

  38. Mukhopadhyay, A., Maulik, U., & Bandyopadhyay, S. (2013). An interactive approach to multiobjective clustering of gene expression patterns. IEEE Transactions on Biomedical Engineering, 60(1), 35–41.

    Article  Google Scholar 

  39. Xia, H., Zhuang, J., & Dehong, Y. (2013). Novel soft subspace clustering with multi-objective evolutionary approach for high-dimensional data. Pattern Recognition, 46, 2562–2575.

    Article  MATH  Google Scholar 

  40. Wang, Y., Xiang, J., & Cai, Z. (2012). A regularity model-based multiobjective estimation of distribution algorithm with reducing redundant cluster operator. Applied Soft Computing, 12, 3526–3538.

    Article  Google Scholar 

  41. Bello-Orgaz, G., & Camacho, D. (2014). Evolutionary clustering algorithm for community detection using graph-based information. In IEEE Congress on Evolutionary Computation (pp. 930–937). doi:10.1109/CEC.2014.6900555.

  42. Singh, H. K., Isaacs, A., & Ray, T. (2011). A pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problem. IEEE Transactions on Evolutionary Computation, 15(4), 539–556.

    Article  Google Scholar 

  43. Kirkland, O., Rayard-Smith, V. J., & de la Iglesia, B. (2011). A novel multi-objective genetic algorithm for clustering (pp. 317–326). Berlin: Springer.

    Google Scholar 

  44. Bandyopadhyay, S., Chakraborth, R., & Maulik, U. (2015). Priority based ε dominance: A new measure in multiobjective optmization. Information Sciences, 305, 97–109.

    Article  Google Scholar 

  45. Liu, L., Mu, H., & Yang, J. (2015). Generic constraints handling techniques in constrained multi-criteria optimization and its application. European Journal of Operational Research, 244, 576–591.

    Article  MathSciNet  MATH  Google Scholar 

  46. Moritz, R. L. V., Reich, E., Schwarz, M., Bert, M., & Middendorf, M. (2014). Refined ranking relations for selections in multi-objective metaheuristics. European Journal of Operational Research, 243(2), 454–464.

    Article  MathSciNet  MATH  Google Scholar 

  47. Li, K., Kwong, S., & Deb, K. (2015). A dual-population paradigm for evolutionary multiobjective optimization. Information Sciences, 309, 50–72.

    Article  Google Scholar 

  48. Inkaya, T., Kayalgil, S., & Ozdemirel, N. E. (2014). An adaptive neighbourhood construction algorithm based on density and connectivity. Pattern Recognition Letters, 52, 17–24.

    Article  Google Scholar 

  49. Kimovski, D., Ortega, J., Ortiz, A., & Banos, R. (2015). Parallel alternatives for evolutionary multi-objective optimization in unsupervised feature selection. Expert Systems with Applications, 42, 4239–4252.

    Article  Google Scholar 

  50. Byers, C., Cheng, B. H. C., & Deb, K. (2015). Unwanted feature interaction between the problem and search operators in evolutionary multi-objective optimization (pp. 19–33). Berlin: Springer.

    Google Scholar 

  51. Ruiz, A. B., Luque, M., Miettinen, K., & Saborida, R. (2015). An interactive evolutionary multiobjective optimization method: Interactive WASF-GA (pp. 249–263). Berlin: Springer.

    Google Scholar 

  52. Saha, S., Spandana, R., Ekbal, A., & Bandyopadhyay, S. (2015). Simultaneous feature selection and symmetry based clustering using multiobjective framework. Applied Soft Computing, 29, 479–486.

    Article  Google Scholar 

  53. Long, Q. (2014). A constraint handling technique for constrained multi-objective genetic algorithm. Swarm and Evolutionary Computation, 15, 66–79.

    Article  Google Scholar 

  54. Long, Q., Wu, C., Huang, T., & Wang, X. (2015). A genetic algorithm for unconstrained multi-objective optimization. Swarm and Evolutionary Computation, 22, 1–14.

    Article  Google Scholar 

  55. Chen, B., Zeng, W., Liu, Y., & Zhang, D. (2015). A new local search-based multi-objective optimization problem. IEEE Transactions on Evolutionary Computation, 19(1), 50–73.

    Article  Google Scholar 

  56. Deb, K., Pratap, A., Agaral, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  57. Dash, M., Liu, H., & Yao, L. (1997). Dimensionality reduction of unsupervised data. In IEEE Conference in Artificial Intelligence (pp. 532–539).

  58. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of American Statistical Association, 336(66), 846–850.

    Article  Google Scholar 

  59. Jing, L. P., Ng, M. K., & Huang, Z. X. (2007). An entropy weighting k-means algorithm for subspace clustering of high dimensional sparse data. IEEE Transactions on Knowledge and Data Engineering, 19, 1026–1041.

    Article  Google Scholar 

  60. http://www.ics.uci.edu/mlearn/MLRepository.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anusha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anusha, M., Sathiaseelan, J.G.R. Evolutionary Clustering Algorithm Using Criterion-Knowledge-Ranking for Multi-objective Optimization. Wireless Pers Commun 94, 2009–2030 (2017). https://doi.org/10.1007/s11277-016-3350-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3350-5

Keywords

Navigation