Skip to main content
Log in

Diagnosis of Faulty Sensors in Phased Array Radar Using Compressed Sensing and Hybrid IRLS–SSF Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, a compressed sensing technique for diagnosis of faulty sensor in an array antenna is proposed. This technique starts from collecting the measurement of the far field pattern. The system relating the difference among the field measured using the healthy reference array and the field radiated by the array under test is analyzed using a parallel coordinate descent (PCD) algorithm, separable surrogate functionals (SSF) algorithm, iterative-reweighted-least-squares (IRLS) algorithm and hybrid IRLS–SSF. These algorithms are applied for complete and partial defective sensors in an array antenna. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of failure sensor with a less number of measurements. It has been shown that the hybrid IRLS–SSF algorithm provides an accurate diagnosis of complete and partial defective sensors as compared to PCD, SSF or IRLS alone. Variety of simulations has been provided to validate the performance of the designed algorithms in diversified scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Khan, S. U., Qureshi, I. M., Zaman, F., & Naveed, A. (2013). Null placement and sidelobe suppression in failed array using symmetrical element failure technique and hybrid heuristic computation. Progress in Electromagnetics Research B, 52, 165–184.

    Article  Google Scholar 

  2. Oliveri, G., Donelli, M., & Massa, A. (2009). Linear array thinning exploiting almost difference sets. IEEE Transactions on Antennas and Propagation, 57(12), 3800–3812.

    Article  Google Scholar 

  3. Oliveri, G., Manica, L., & Massa, A. (2010). ADS-based guidelines for thinned planar arrays. IEEE Transactions on Antennas and Propagation, 58(6), 1935–1948.

    Article  Google Scholar 

  4. Carlin, M., Oliveri, G., & Massa, A. (2011). On the robustness to element failures of linear ADS-thinned arrays. IEEE Transactions on Antennas and Propagation, 59(12), 4849–4853.

    Article  MathSciNet  Google Scholar 

  5. Bucci, O. M., Migliore, M. D., Panariello, G., & Sgambato, P. (2005). Accurate diagnosis of conformal arrays from near-field data using the matrix method. IEEE Transactions on Antennas and Propagation, 53(3), 1114–1120.

    Article  Google Scholar 

  6. Lee, J. J., Ferren, E. M., Woollen, P. D., & Lee, K. M. (1988). Near-field probe used as a diagnostic tool to locate defective elements in an array antenna. IEEE Transactions on Antennas and Propagation, 36(6), 884–889.

    Article  Google Scholar 

  7. Rodríguez-González, J. A., Ares-Pena, F., Fernández-Delgado, M., Iglesias, R., & Barro, S. (2009). Rapid method for finding faulty elements in antenna arrays using far field pattern samples. IEEE Transactions on Antennas and Propagation, 57(6), 1679–1683.

    Article  Google Scholar 

  8. Patnaik, A., Choudhury, B., Pradhan, P., Mishra, R. K., & Christodoulou, C. (2007). An ANN application for fault finding in antenna arrays. IEEE Transactions on Antennas and Propagation, 55(3), 775–777.

    Article  Google Scholar 

  9. Migliore, M. D. (2011). A compressed sensing approach for array diagnosis from a small set of near-field measurements. IEEE Transactions on Antennas and Propagation, 59(6), 2127–2133.

    Article  MathSciNet  Google Scholar 

  10. Oliveri, G., Rocca, P., & Massa, A. (2012). Reliable diagnosis of large linear arrays: A Bayesian compressive sensing approach. IEEE Transactions on Antennas and Propagation, 60(10), 4627–4636.

    Article  MathSciNet  Google Scholar 

  11. Candes, E. J., & Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12), 5406–5425.

    Article  MathSciNet  MATH  Google Scholar 

  12. Akçakaya, M., & Tarokh, V. (2010). Shannon-theoretic limits on noisy compressive sampling. IEEE Transactions on Information Theory, 56(1), 492–504.

    Article  MathSciNet  Google Scholar 

  13. Candes, E. J., Romberg, J. K., & Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8), 1207–1223.

    Article  MathSciNet  MATH  Google Scholar 

  14. Candè, E. J., & Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing MagazineIEEE, 25(2), 21–30.

    Article  Google Scholar 

  15. Lustig, M., Donoho, D. L., Santos, J. M., & Pauly, J. M. (2008). Compressed sensing MRI. IEEE Signal Processing Magazine, 25(2), 72–82.

    Article  Google Scholar 

  16. Ji, S., Xue, Y., & Carin, L. (2008). Bayesian compressive sensing. IEEE Transactions on Signal Processing, 56(6), 2346–2356.

    Article  MathSciNet  Google Scholar 

  17. Elad, M. (2010). Sparse and redundant representations: From theory to applications in signal and image processing. Berlin: Springer.

    Book  MATH  Google Scholar 

  18. Mendelson, S., Pajor, A., & Tomczak-Jaegermann, N. (2008). Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constructive Approximation, 28(3), 277–289.

    Article  MathSciNet  MATH  Google Scholar 

  19. Baraniuk, R. G. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.

    Article  MathSciNet  Google Scholar 

  20. Karaboga, D., & Guney, K. (1999). A simple formula obtained using tabu search algorithm for the radiation efficiency of a resonant rectangular microstrip antenna. Turkish Journal of Electrical Engineering, 7(1–3), 19–28.

    Google Scholar 

  21. Mouhamadou, M., Vaudon, P., & Rammal, M. (2006). Smart antenna array patterns synthesis: Null steering and multi-user beamforming by phase control. Progress in Electromagnetics Research, 60, 95–106.

    Article  Google Scholar 

  22. Mailloux, R. J. (2005). Phased array antenna handbook (2nd ed.). Norwood, MA: Artech House.

    Google Scholar 

  23. Adeyemi, T., & Davies, M. E. (2006 July). Sparse representations of images using overcomplete complex wavelets. In IEEE SP 13th Workshop on Statistical Signal Processing (pp. 805–809).

  24. Gorodnitsky, I. F., & Rao, B. D. (1997). Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. Signal Processing, IEEE Transactions on, 45(3), 600–616.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafqat Ullah Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Qureshi, I.M., Haider, H. et al. Diagnosis of Faulty Sensors in Phased Array Radar Using Compressed Sensing and Hybrid IRLS–SSF Algorithm. Wireless Pers Commun 91, 383–402 (2016). https://doi.org/10.1007/s11277-016-3466-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3466-7

Keywords

Navigation